Vol. XXX Issue 1
Article 5
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><!-- [et_pb_line_break_holder] --><html xmlns="http://www.w3.org/1999/xhtml"><!-- [et_pb_line_break_holder] --><head><!-- [et_pb_line_break_holder] --><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /><!-- [et_pb_line_break_holder] --><title>Untitled Document</title><!-- [et_pb_line_break_holder] --></head><!-- [et_pb_line_break_holder] --><!-- [et_pb_line_break_holder] --><body><!-- [et_pb_line_break_holder] --><p align="right"><font face="Arial, Helvetica, sans-serif"><b><font size="3">REVIEW ARTICLE</font></b></font></p><!-- [et_pb_line_break_holder] --><p><font size="4" face="Arial, Helvetica, sans-serif"><b>Taking advantage of organelle genomes in plant</b> <!-- [et_pb_line_break_holder] --> <b>breeding: an integrated approach</b></font></p><!-- [et_pb_line_break_holder] --><p><i><b><font size="3" face="Arial, Helvetica, sans-serif">Aprovechando los genomas de las organelas en el <!-- [et_pb_line_break_holder] --> mejoramiento genético de plantas: un enfoque integrado</font></b></i></p><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">Colombo N</font><font size="3">.</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">Instituto de Genética “Ewald A. <!-- [et_pb_line_break_holder] --> Favret”, CIVyA, INTA, Nicolás Repetto <!-- [et_pb_line_break_holder] --> y de los Los Reseros S/N (1686), <!-- [et_pb_line_break_holder] --> Hurlingham, Provincia de Buenos <!-- [et_pb_line_break_holder] --> Aires, Argentina</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> <b>Corresponding author</b>: <!-- [et_pb_line_break_holder] --> Colombo N. <!-- [et_pb_line_break_holder] --> <a href="mailto:colombo.noemi@inta.gob.ar">colombo.noemi@inta.gob.ar</a></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">DOI: 10.35407/bag.2019.XXX.01.05</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Received</b>: 03/13/2019<br /><!-- [et_pb_line_break_holder] --> <b>Accepted</b>: 06/21/2019</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>ABSTRACT</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><!-- [et_pb_line_break_holder] --> Plant cells carry their genetic information in three compartments: the nucleus, the <!-- [et_pb_line_break_holder] --> plastids and the mitochondria. In last years, next-generation sequencing has allowed the <!-- [et_pb_line_break_holder] --> development of genomic databases, which are increasingly improving our knowledge about <!-- [et_pb_line_break_holder] --> the role of nuclear and cytoplasmic genes as well as their interactions in plant development. <!-- [et_pb_line_break_holder] --> However, most plant breeding efforts consider the utilization of the nuclear genome, while <!-- [et_pb_line_break_holder] --> less attention is given to plastid and mitochondrial genomes. The objective of this review is <!-- [et_pb_line_break_holder] --> to present current knowledge about cytoplasmic and cytonuclear effects on agronomic traits <!-- [et_pb_line_break_holder] --> bearing in mind the prospective utilization of all the genomes in plant breeding.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Key words</b>: Cytoplasmic genes; Cytoplasmic-nuclear interactions; Plant breeding methods.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>RESUMEN</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">La información genética de las células vegetales está contenida en tres compartimentos: <!-- [et_pb_line_break_holder] --> el núcleo, los plástidos y las mitocondrias. En los últimos años, la secuenciación de última <!-- [et_pb_line_break_holder] --> generación ha permitido desarrollar bases de datos genómicas que están aumentando <!-- [et_pb_line_break_holder] --> progresivamente nuestro conocimiento sobre el rol de los genes nucleares y citoplásmicos <!-- [et_pb_line_break_holder] --> y de sus interacciones durante el desarrollo de la planta. Sin embargo, la mayoría de los <!-- [et_pb_line_break_holder] --> esfuerzos de la mejora vegetal se basan en el aprovechamiento del genoma nuclear y relegan <!-- [et_pb_line_break_holder] --> a los genomas de los plástidos y las mitocondrias. El objetivo de esta revisión es actualizar <!-- [et_pb_line_break_holder] --> el conocimiento sobre de los efectos citoplásmicos y las interacciones núcleo-citoplásmicas <!-- [et_pb_line_break_holder] --> sobre caracteres interés agronómico, asumiendo la utilización potencial de todos los <!-- [et_pb_line_break_holder] --> genomas en el mejoramiento vegetal.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Palabras clave</b>: Genes citoplásmicos; Interacciones núcleo-citoplásmicas; Métodos de <!-- [et_pb_line_break_holder] --> mejoramiento vegetal.</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>PLANT ORGANELLE GENOMES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><!-- [et_pb_line_break_holder] --> The plant cell is the result of endosymbiotic events which resulted in the evolution<!-- [et_pb_line_break_holder] --> of the mitochondrion from an -proteobacterium and, somewhat later, the<!-- [et_pb_line_break_holder] --> evolution of the chloroplasts from a cyanobacterium. During co-evolution, the<!-- [et_pb_line_break_holder] --> three genomes of plant cells have undergone significant structural changes that<!-- [et_pb_line_break_holder] --> resulted in an optimized expression of the compartmentalized genetic material<!-- [et_pb_line_break_holder] --> and cross-talk between the nucleus and the organelles. As a result of co-evolution,<!-- [et_pb_line_break_holder] --> most genes from the symbionts were transferred to the nucleus of the host cell.<!-- [et_pb_line_break_holder] --> Although mitochondria and plastids still retain their own, ancestral DNA, most<!-- [et_pb_line_break_holder] --> proteins required for organelle function are encoded in the nucleus and must<!-- [et_pb_line_break_holder] --> be imported (Allen, 2015; Archibald, 2015; Grainer and Bock, 2013; Smith and<!-- [et_pb_line_break_holder] --> Keeling, 2015). There are multiple copies of both plastid<!-- [et_pb_line_break_holder] --> and mitochondrial DNA inside each organelle. The<!-- [et_pb_line_break_holder] --> number of copies varies depending on the tissue type<!-- [et_pb_line_break_holder] --> and it changes notably during development (Kumar <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>., 2015; Oldenburg and Bendich, 2015). Regarding their<!-- [et_pb_line_break_holder] --> mode of inheritance, while nuclear genetic information<!-- [et_pb_line_break_holder] --> is inherited biparentally, plastid and mitochondrial<!-- [et_pb_line_break_holder] --> genomes of most land plants show predominantly<!-- [et_pb_line_break_holder] --> maternal inheritance, with some cases of paternal and<!-- [et_pb_line_break_holder] --> biparental inheritance (Birky, 1995; Xu, 2005; Greiner <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>., 2014).<!-- [et_pb_line_break_holder] --> High-throughput sequencing technologies have<!-- [et_pb_line_break_holder] --> allowed rapid advance in organelle genetics and<!-- [et_pb_line_break_holder] --> genomics. To date, 2257 complete chloroplast genomes<!-- [et_pb_line_break_holder] --> and 246 plant mitochondrial genomes are available<!-- [et_pb_line_break_holder] --> (https://www.ncbi.nlm.nih.gov/genome/browse#!/organelles).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> The chloroplast genomes (plastomes) of land plants<!-- [et_pb_line_break_holder] --> range between 107 kb (<em>Cathaya argyrophylla</em>) to 403 kb<!-- [et_pb_line_break_holder] --> (<em>Codonopsis lanceolata</em>). They have highly conserved<!-- [et_pb_line_break_holder] --> structures and organization of content, consisting of a<!-- [et_pb_line_break_holder] --> single circular molecule with two copies of an Inverted<!-- [et_pb_line_break_holder] --> Region (IR) that separate large and small single-copy<!-- [et_pb_line_break_holder] --> (LSC and SSC) regions. Recent studies have identified<!-- [et_pb_line_break_holder] --> considerable diversity within non-coding intergenic<!-- [et_pb_line_break_holder] --> spacer regions, which often include important<!-- [et_pb_line_break_holder] --> regulatory sequences. The chloroplast genome includes<!-- [et_pb_line_break_holder] --> 120-130 genes, mainly participating in photosynthesis,<!-- [et_pb_line_break_holder] --> transcription, and translation (Daniell <em>et al., </em>2016).<!-- [et_pb_line_break_holder] --> Plant mitochondria genomes range between 200 and<!-- [et_pb_line_break_holder] --> 750 kb in angiosperms, but extreme sizes of 6.7 Mb and<!-- [et_pb_line_break_holder] --> 11.3 Mb are found in <em>Silene noctiflora </em>and <em>Silene conica</em><!-- [et_pb_line_break_holder] --> respectively, resulting from massive proliferation of<!-- [et_pb_line_break_holder] --> non-coding content. The number of genes usually<!-- [et_pb_line_break_holder] --> ranges between 50 and 60, with multiple cis- or transspliced<!-- [et_pb_line_break_holder] --> introns and large intergenic regions. Protein<!-- [et_pb_line_break_holder] --> genes encode subunits of the oxidative phosphorylation<!-- [et_pb_line_break_holder] --> chain complexes proteins involved in the biogenesis of<!-- [et_pb_line_break_holder] --> these complexes and several ribosomal proteins. The<!-- [et_pb_line_break_holder] --> physical organization of the plant mitochondrial DNA<!-- [et_pb_line_break_holder] --> includes a set of sub-genomic forms resulting from<!-- [et_pb_line_break_holder] --> homologous recombination between repeats, with a<!-- [et_pb_line_break_holder] --> mixture of linear, circular and branched structures.<!-- [et_pb_line_break_holder] --> Recombination appears to be an essential characteristic<!-- [et_pb_line_break_holder] --> of plant mitochondrial genetic processes, both in<!-- [et_pb_line_break_holder] --> shaping and maintaining the genome. In addition,<!-- [et_pb_line_break_holder] --> autonomous plasmids of essentially unknown function<!-- [et_pb_line_break_holder] --> are found, increasing the complexity of the genome<!-- [et_pb_line_break_holder] --> (Gualberto <em>et al</em>., 2014; Morley and Nielsen, 2017).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>THE ROLES OF PLANT ORGANELLES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Chloroplasts and mitochondria are mainly known<!-- [et_pb_line_break_holder] --> by their involvement in photosynthesis and ATP<!-- [et_pb_line_break_holder] --> production, respectively. However, both organelles<!-- [et_pb_line_break_holder] --> play a part in multiple metabolic pathways and<!-- [et_pb_line_break_holder] --> are essential for normal growth and development<!-- [et_pb_line_break_holder] --> of plants (van Dingenen <em>et al</em>., 2016). Chloroplasts<!-- [et_pb_line_break_holder] --> are part of the family of plastids, in which some<!-- [et_pb_line_break_holder] --> components are interconvertible during development:<!-- [et_pb_line_break_holder] --> proplastids, etioplasts, chloroplasts, chromoplasts,<!-- [et_pb_line_break_holder] --> leucoplasts, elaioplasts, amyloplasts, proteinoplasts<!-- [et_pb_line_break_holder] --> and gerontoplasts. All plastids perform house-keeping<!-- [et_pb_line_break_holder] --> functions and basal metabolic functions essential to<!-- [et_pb_line_break_holder] --> the cell metabolism and specific roles according to<!-- [et_pb_line_break_holder] --> their differentiated type. Plastids are the site of carbon<!-- [et_pb_line_break_holder] --> oxidation via photorespiration, chlorophyll synthesis,<!-- [et_pb_line_break_holder] --> carotenoid, -tocopherol (vitamin E), plastoquinone<!-- [et_pb_line_break_holder] --> and phylloquinone (vitamin K) synthesis, fatty acid and<!-- [et_pb_line_break_holder] --> lipid synthesis, nitrogen assimilation and aminoacid<!-- [et_pb_line_break_holder] --> synthesis, sulfur metabolism, oxygen metabolism and<!-- [et_pb_line_break_holder] --> chlororespiration (Wise, 2007; Rolland <em>et al</em>., 2018).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Mitochondria are dynamic organelles, changing<!-- [et_pb_line_break_holder] --> shape, number, size, composition and distribution inside<!-- [et_pb_line_break_holder] --> the cell depending on developmental stage, type of tissue,<!-- [et_pb_line_break_holder] --> cell cycle phase, energetic cell demand, and external<!-- [et_pb_line_break_holder] --> stimuli. Mitochondria are involved in the synthesis of<!-- [et_pb_line_break_holder] --> nucleotides, vitamins and cofactors, the metabolism of<!-- [et_pb_line_break_holder] --> amino acids and lipids, the photorespiratory pathway and<!-- [et_pb_line_break_holder] --> the export of organic acid intermediates for wider cellular<!-- [et_pb_line_break_holder] --> biosynthesis (Welchen <em>et al</em>., 2013; Rao <em>et al</em>., 2017).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Results obtained in last years demonstrated that<!-- [et_pb_line_break_holder] --> mitochondria and chloroplasts also play a crucial role<!-- [et_pb_line_break_holder] --> in perceiving and responding to biotic and abiotic<!-- [et_pb_line_break_holder] --> stress conditions and that both organelles participate<!-- [et_pb_line_break_holder] --> in programmed cell death (Chi <em>et al</em>., 2015;Liberatore <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>., 2016; Wang <em>et al</em>., 2018; Beltrán <em>et al., </em>2018; Rolland<!-- [et_pb_line_break_holder] --> <em>et al., </em>2018; Zhao <em>et al</em>., 2018). Thousands of plastid and<!-- [et_pb_line_break_holder] --> mitochondrial proteins needed to perform such a variety<!-- [et_pb_line_break_holder] --> of functions are nuclear encoded and targeted to the<!-- [et_pb_line_break_holder] --> organelles, making it crucial to ensure the coordinated<!-- [et_pb_line_break_holder] --> expression of different genomes. A complex signaling<!-- [et_pb_line_break_holder] --> network between the nucleus and the organelles,<!-- [et_pb_line_break_holder] --> including both anterograde signaling (from the nucleus<!-- [et_pb_line_break_holder] --> to the organelles) and retrograde signaling (from the<!-- [et_pb_line_break_holder] --> organelles to the nucleus) as well as inter-organelle<!-- [et_pb_line_break_holder] --> signaling mediates the communication between<!-- [et_pb_line_break_holder] --> genomes and ensures proper gene expression (Blanco <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>., 2014; Kleine and Leister, 2016; van Aken and Pogson,<!-- [et_pb_line_break_holder] --> 2017; de Souza <em>et al</em>., 2017; Brunkard and Burch-Smith,<!-- [et_pb_line_break_holder] --> 2018; Crawford <em>et al</em>., 2018).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>ORGANELLES GENOMES IN PLANT</strong><!-- [et_pb_line_break_holder] --> <strong>BREEDING</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Breeders have been regularly aware of the contribution<!-- [et_pb_line_break_holder] --> of cytoplasmic genomes to plant phenotype and have<!-- [et_pb_line_break_holder] --> therefore chosen certain particular combinations of<!-- [et_pb_line_break_holder] --> cytoplasmic and nuclear donor genetic materials. The<!-- [et_pb_line_break_holder] --> most direct way to uncover cytoplasmic genetic effects<!-- [et_pb_line_break_holder] --> on a trait is by the use of reciprocal crosses, in which<!-- [et_pb_line_break_holder] --> each individual is used both as a male and as a female<!-- [et_pb_line_break_holder] --> parent. For any trait, differences observed between<!-- [et_pb_line_break_holder] --> hybrids obtained from the same parents suggest that the<!-- [et_pb_line_break_holder] --> cytoplasm plays a role in the considered trait. Reciprocal<!-- [et_pb_line_break_holder] --> crosses included in some of the traditional mating<!-- [et_pb_line_break_holder] --> designs have been used to estimate genetic effects in<!-- [et_pb_line_break_holder] --> quantitative genetics (Hayman, 1954; Griffing, 1956).<!-- [et_pb_line_break_holder] --> Fan <em>et al</em>. (2014) compared the results obtained using a<!-- [et_pb_line_break_holder] --> diallel experiment with or without reciprocal crosses and<!-- [et_pb_line_break_holder] --> found that including reciprocal crosses allowed for the<!-- [et_pb_line_break_holder] --> recovery of more high yielding hybrids and influenced<!-- [et_pb_line_break_holder] --> both the estimates of general combining ability (GCA)<!-- [et_pb_line_break_holder] --> and specific combining ability (SCA) effects and the<!-- [et_pb_line_break_holder] --> heterotic group classification in maize.<!-- [et_pb_line_break_holder] --> However, differences between direct and reciprocal<!-- [et_pb_line_break_holder] --> hybrids may be also due to genomic imprinting and<!-- [et_pb_line_break_holder] --> maternal effects, like endosperm dosage effects<!-- [et_pb_line_break_holder] --> and maternal phenotypic effects resulting from the<!-- [et_pb_line_break_holder] --> environment or genotype of the maternal parent. In order<!-- [et_pb_line_break_holder] --> to avoid these confounding effects, new populations<!-- [et_pb_line_break_holder] --> for QTL analysis have been proposed, like F2 reciprocal<!-- [et_pb_line_break_holder] --> populations and their F2:F3 families (Tang <em>et al</em>., 2013)<!-- [et_pb_line_break_holder] --> or reciprocal RILs (McKay <em>et al</em>., 2008).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Another reliable approach extensively used to<!-- [et_pb_line_break_holder] --> identify independent cytoplasmic effects, consists in<!-- [et_pb_line_break_holder] --> developing nuclear substitution lines or cytolines by<!-- [et_pb_line_break_holder] --> backcrossing several times a cytoplasm donor by the<!-- [et_pb_line_break_holder] --> recurrent male parent, in order to obtain isonuclear<!-- [et_pb_line_break_holder] --> lines differing only in the cytoplasm type. Allen (2005)<!-- [et_pb_line_break_holder] --> used a set of cytolines carrying the nuclear genome of<!-- [et_pb_line_break_holder] --> a maize inbred line and the cytoplasm from different<!-- [et_pb_line_break_holder] --> teosintes belonging to the sections <em>Zea </em>and <em>Luxuriantes</em>,<!-- [et_pb_line_break_holder] --> and found that cytolines with cytoplasm from the more<!-- [et_pb_line_break_holder] --> distantly related <em>Z. luxurians</em>, <em>Z. diploperennis</em>, or <em>Z.</em><!-- [et_pb_line_break_holder] --> <em>perennis </em>presented significant differences for 56 of the<!-- [et_pb_line_break_holder] --> 58 characters studied, affecting growth, development,<!-- [et_pb_line_break_holder] --> morphology, and function. Besides their usefulness<!-- [et_pb_line_break_holder] --> to uncover cytoplasmic effects on agronomic traits,<!-- [et_pb_line_break_holder] --> cytolines are also valuable tools to diversify the genetic<!-- [et_pb_line_break_holder] --> basis of crops (Calugar <em>et al., </em>2016).<!-- [et_pb_line_break_holder] --> Sometimes it is necessary to bypass post- and prezygotic<!-- [et_pb_line_break_holder] --> sexual incompatibilities that prevent the use<!-- [et_pb_line_break_holder] --> of wide crosses. In this case, somatic hybrids can be<!-- [et_pb_line_break_holder] --> developed via protoplast fusion, thus allowing the<!-- [et_pb_line_break_holder] --> combination of nuclei and organelles from different<!-- [et_pb_line_break_holder] --> origin. Practical results using somatic hybrids to<!-- [et_pb_line_break_holder] --> improve agronomic traits have been recently reported<!-- [et_pb_line_break_holder] --> in model families <em>Rutaceae, Brassicaceae </em>and <em>Solanaceae</em><!-- [et_pb_line_break_holder] --> (Xia, 2009; Eeckhaut <em>et al.</em>, 2013).<!-- [et_pb_line_break_holder] --> The magnitude of cytoplasmic genetic effects on<!-- [et_pb_line_break_holder] --> phenotypic expression is still a matter of debate.<!-- [et_pb_line_break_holder] --> Cytoplasmic genetic effects can be additive, due to<!-- [et_pb_line_break_holder] --> mutations in organelle genes, or epistatic, resulting<!-- [et_pb_line_break_holder] --> from interactions between organelle and nuclear genes.<!-- [et_pb_line_break_holder] --> In a meta-analytic review Dobler <em>et al. </em>(2014) evaluated<!-- [et_pb_line_break_holder] --> 521 effect-size estimates reported in 66 publications<!-- [et_pb_line_break_holder] --> including animals, fungi and plants. These authors<!-- [et_pb_line_break_holder] --> found that cytoplasmic effect sizes are generally<!-- [et_pb_line_break_holder] --> moderate in size and associated with variation across<!-- [et_pb_line_break_holder] --> a range of factors, like the analyzed trait type, the<!-- [et_pb_line_break_holder] --> experimental design used, the gene action associated<!-- [et_pb_line_break_holder] --> with the reported cytoplasmic effect (additive or<!-- [et_pb_line_break_holder] --> epistatic) and the experimental scale (intrapopulation,<!-- [et_pb_line_break_holder] --> interpopulation or interspecies).<!-- [et_pb_line_break_holder] --> A growing set of data obtained following different<!-- [et_pb_line_break_holder] --> approaches show that organelle genomic variation can<!-- [et_pb_line_break_holder] --> modulate the effects of nuclear genomic variation in<!-- [et_pb_line_break_holder] --> plants. Cytonuclear genetic interactions are predictable<!-- [et_pb_line_break_holder] --> considering the complex network of retrograde signaling<!-- [et_pb_line_break_holder] --> existing between organelles and nuclear genomes<!-- [et_pb_line_break_holder] --> which ensures normal plant development. Joseph <em>et al.</em><!-- [et_pb_line_break_holder] --> (2013) analyzed the effect of cytoplasmic genomes on<!-- [et_pb_line_break_holder] --> quantitative variation within the metabolome using a<!-- [et_pb_line_break_holder] --> reciprocal recombinant RILs population in <em>Arabidopsis</em>.<!-- [et_pb_line_break_holder] --> These authors demonstrated that genetic variation in the<!-- [et_pb_line_break_holder] --> organelles influenced the accumulation of over 80% of the<!-- [et_pb_line_break_holder] --> detectable metabolites and that cytoplasmic background<!-- [et_pb_line_break_holder] --> affected epistatic interactions between nuclear loci. Other<!-- [et_pb_line_break_holder] --> studies using phenotypic, microarray, and metabolomics<!-- [et_pb_line_break_holder] --> analyses as well as whole transcriptome sequencing of<!-- [et_pb_line_break_holder] --> cytolines revealed cytonuclear effects in rice, maize and<!-- [et_pb_line_break_holder] --> wheat (Tao <em>et al</em>., 2004; Crosatti <em>et al</em>., 2013; Soltani <em>et al.</em>,<!-- [et_pb_line_break_holder] --> 2016; Miclaus <em>et al</em>., 2016).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> So far, the traits with major impact in plant breeding<!-- [et_pb_line_break_holder] --> showing cytoplasmic effects have been cytoplasmic male<!-- [et_pb_line_break_holder] --> sterility (CMS), caused by mitochondrial genes (Bohra<!-- [et_pb_line_break_holder] --> <em>et al</em>., 2016; Chen <em>et al., </em>2017) and herbicide resistance,<!-- [et_pb_line_break_holder] --> codified by mutations in the chloroplast gene <em>psbA</em><!-- [et_pb_line_break_holder] --> (Greiner, 2012). However, many other characters like<!-- [et_pb_line_break_holder] --> yield and quality parameters, disease resistance, chilling<!-- [et_pb_line_break_holder] --> tolerance, tissue culture response and regeneration,<!-- [et_pb_line_break_holder] --> combining ability and plant adaptation have been found<!-- [et_pb_line_break_holder] --> to be associated with the effect of cytoplasmic genes and<!-- [et_pb_line_break_holder] --> cytonuclear interactions (Chandra-Shekara <em>et al</em>., 2007;<!-- [et_pb_line_break_holder] --> Gordon and Staub, 2011; Reddy <em>et al</em>., 2011; Bock <em>et al</em>.,<!-- [et_pb_line_break_holder] --> 2014; Shen <em>et al</em>., 2015; Roux <em>et al</em>., 2016; Satyavathi <em>et</em><!-- [et_pb_line_break_holder] --> <em>al., </em>2016; Dey <em>et al</em>., 2017b; Boussardon <em>et al</em>., 2019). The<!-- [et_pb_line_break_holder] --> most recent reviews on this subject have been published<!-- [et_pb_line_break_holder] --> several years ago (Frei <em>et al</em>., 2003; Dhillon <em>et al</em>., 2008;<!-- [et_pb_line_break_holder] --> Mackenzie, 2010) creating the need to bring together<!-- [et_pb_line_break_holder] --> the new data obtained to date. In the next sections, an<!-- [et_pb_line_break_holder] --> update on the effects of cytoplasmic genomes and their<!-- [et_pb_line_break_holder] --> interactions on agronomic traits in different crops is<!-- [et_pb_line_break_holder] --> presented, emphasizing the methodologies and plant<!-- [et_pb_line_break_holder] --> materials employed.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Maize<br /><!-- [et_pb_line_break_holder] --></strong><!-- [et_pb_line_break_holder] --> In maize (<em>Zea mays </em>L.) male sterile cytoplasms have<!-- [et_pb_line_break_holder] --> been classified in three major groups by their response<!-- [et_pb_line_break_holder] --> to specific restorer genes: T (Texas), S (USDA), and<!-- [et_pb_line_break_holder] --> C (Charrua) (Gabay-Laughnan and Laughnan, 1994;<!-- [et_pb_line_break_holder] --> Allen <em>et al</em>., 2007; Su <em>et al</em>., 2016; Li <em>et al</em>., 2017). As in<!-- [et_pb_line_break_holder] --> other species in which CMS is used to produce hybrid<!-- [et_pb_line_break_holder] --> seeds, importance has been given to evaluate the effects<!-- [et_pb_line_break_holder] --> associated to male sterile cytoplasms on agronomic<!-- [et_pb_line_break_holder] --> traits. Cytoplasm T constitutes a typical case of the risks<!-- [et_pb_line_break_holder] --> of genetic uniformity. This source of male sterility had<!-- [et_pb_line_break_holder] --> been extensively adopted by breeders due to its reliability<!-- [et_pb_line_break_holder] --> since the 1960’s. However, cytoplasm T resulted<!-- [et_pb_line_break_holder] --> susceptible to Southern Corn Leaf Blight caused by<!-- [et_pb_line_break_holder] --> <em>Bipolaris maydis </em>(Nisikado and Miyake) Shoemaker; race<!-- [et_pb_line_break_holder] --> T. As a result of the severe losses caused by the epidemic<!-- [et_pb_line_break_holder] --> of 1970–1971 in USA and southern Canada, with >85% of<!-- [et_pb_line_break_holder] --> the hybrids grown carrying cytoplasm T, this cytoplasm<!-- [et_pb_line_break_holder] --> has been banned from hybrid seed production (Bruns,<!-- [et_pb_line_break_holder] --> 2017). <br /><!-- [et_pb_line_break_holder] --> After cytoplasm T withdrawal, cytoplasms S and C<!-- [et_pb_line_break_holder] --> have been adopted for hybrid seed production. Although<!-- [et_pb_line_break_holder] --> cytoplasm C shows higher stability than cytoplasm S<!-- [et_pb_line_break_holder] --> (Weider <em>et al</em>., 2009), it should be kept in mind that C is<!-- [et_pb_line_break_holder] --> also specifically susceptible to race C of <em>B. maydis</em>, which<!-- [et_pb_line_break_holder] --> is only known to occur in China (Gao <em>et al., </em>2005). As in<!-- [et_pb_line_break_holder] --> other crops, introduction of male sterile cytoplasms in<!-- [et_pb_line_break_holder] --> maize breeding programs must be preceded by a careful<!-- [et_pb_line_break_holder] --> evaluation of their associated defects on agronomic<!-- [et_pb_line_break_holder] --> traits (Jovanovick <em>et al</em>., 2017).<!-- [et_pb_line_break_holder] --> Apart from the case of male sterile cytoplasms,<!-- [et_pb_line_break_holder] --> several studies have found cytoplasmic and cytonuclear<!-- [et_pb_line_break_holder] --> effects in maize. A diallel analysis using nine quality<!-- [et_pb_line_break_holder] --> protein maize (QPM) inbred lines evaluated over seven<!-- [et_pb_line_break_holder] --> environments detected significant reciprocal effects for<!-- [et_pb_line_break_holder] --> quality index, tryptophan, and anthesis date, which on<!-- [et_pb_line_break_holder] --> the average accounted for <13% of the variation among<!-- [et_pb_line_break_holder] --> hybrids (Machida <em>et al., </em>2010).<!-- [et_pb_line_break_holder] --> Tang <em>et al</em>. (2013) evaluated the cytoplasmic effects<!-- [et_pb_line_break_holder] --> and cytonuclear interactions on plant height (PH) and<!-- [et_pb_line_break_holder] --> ear height (EH), by using the joint analysis approach to<!-- [et_pb_line_break_holder] --> both reciprocal F2 and F2: 3 families and incorporating<!-- [et_pb_line_break_holder] --> the cytonuclear interaction mapping method. These<!-- [et_pb_line_break_holder] --> authors identified six cytonuclear epistatic QTL affecting<!-- [et_pb_line_break_holder] --> PH and five affecting EH. The average phenotypic<!-- [et_pb_line_break_holder] --> variance explained by the genetic components of the<!-- [et_pb_line_break_holder] --> QTL x cytoplasm interaction for each QTL was 18% for<!-- [et_pb_line_break_holder] --> PH and 9% for EH. Regarding cytoplasmic effects, they<!-- [et_pb_line_break_holder] --> reached 9% and 40% of the phenotypic contributions to<!-- [et_pb_line_break_holder] --> PH and EH, respectively.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Flowering time in maize was analyzed applying<!-- [et_pb_line_break_holder] --> the same approach (Tang <em>et al.</em>, 2014). In this case,<!-- [et_pb_line_break_holder] --> the authors evaluated the days to tassel (DTT) and the<!-- [et_pb_line_break_holder] --> days to pollen shed (DPS) and found that although<!-- [et_pb_line_break_holder] --> the cytoplasmic effects were not significant between<!-- [et_pb_line_break_holder] --> the direct and reciprocal populations, four and eight<!-- [et_pb_line_break_holder] --> cytonuclear epistatic QTL significantly contributed<!-- [et_pb_line_break_holder] --> to the variation in DTT and DPS, respectively. Most of<!-- [et_pb_line_break_holder] --> the cytonuclear epistatic QTL cannot be detected when<!-- [et_pb_line_break_holder] --> using the interval mapping method, evidencing the<!-- [et_pb_line_break_holder] --> importance of proper statistical modeling. In a study<!-- [et_pb_line_break_holder] --> carried out by Calugar <em>et al</em>. (2016) a set of cytolines,<!-- [et_pb_line_break_holder] --> obtained after transferring the nucleus of five inbred<!-- [et_pb_line_break_holder] --> lines on four cytoplasm sources by backcrossing for ten<!-- [et_pb_line_break_holder] --> generations, was used to determine the cytoplasmic<!-- [et_pb_line_break_holder] --> effect on the plant height, ear height, number of leaves/<!-- [et_pb_line_break_holder] --> plants, leaf area and the tassel length on some maize<!-- [et_pb_line_break_holder] --> inbred lines. Two cytoplasms (T 248 and TC 221) showed<!-- [et_pb_line_break_holder] --> significant effect on plant and ear height, leaf area and<!-- [et_pb_line_break_holder] --> the tassel length. Besides, the authors detected some<!-- [et_pb_line_break_holder] --> interaction between the cytoplasm and the nucleus that<!-- [et_pb_line_break_holder] --> caused significant differences in the analyzed traits<!-- [et_pb_line_break_holder] --> when the cytoline was compared to the original inbred.<br /><!-- [et_pb_line_break_holder] --> Several reports noted differential expression between<!-- [et_pb_line_break_holder] --> reciprocal F1 hybrids in maize for various kernel and<!-- [et_pb_line_break_holder] --> germination traits (Cervantes Ortiz <em>et al</em>., 2007; Cabral<!-- [et_pb_line_break_holder] --> <em>et al</em>., 2013; de la Torre and Biasutti, 2015; Santos <em>et al</em>.,<!-- [et_pb_line_break_holder] --> 2017; de Abreu <em>et al</em>., 2019). In Angiosperms, double<!-- [et_pb_line_break_holder] --> fertilization results in the development of the diploid<!-- [et_pb_line_break_holder] --> embryo and triploid endosperm that are surrounded<!-- [et_pb_line_break_holder] --> by the maternal seed coat derived from the ovule<!-- [et_pb_line_break_holder] --> integuments. Therefore, communication between these<!-- [et_pb_line_break_holder] --> three genetically distinct structures ensures viable seed<!-- [et_pb_line_break_holder] --> development (Figueiredo and Kohler, 2016; Chettoor <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>., 2016). Differences observed in reciprocal F1 crosses<!-- [et_pb_line_break_holder] --> may thus be due to epigenetic phenomena (imprinting<!-- [et_pb_line_break_holder] --> and xenia), dosage effects (in case of triploid tissue such<!-- [et_pb_line_break_holder] --> as endosperm) and cytoplasmic effects (associated to<!-- [et_pb_line_break_holder] --> mitochondrial and chloroplast genomes). Interestingly,<!-- [et_pb_line_break_holder] --> phenotypic and differential expression profiling<!-- [et_pb_line_break_holder] --> carried out using reciprocal F1 hybrids to determine the<!-- [et_pb_line_break_holder] --> genes associated to seed size (Zhang <em>et al., </em>2016), cold<!-- [et_pb_line_break_holder] --> germination and desiccation tolerance (Kollipara <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>., 2002), suggest the role of gene imprinting and not<!-- [et_pb_line_break_holder] --> cytoplasmic genetic effects as a molecular mechanism<!-- [et_pb_line_break_holder] --> underlying the observed reciprocal effects.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Wheat</strong><br /><!-- [et_pb_line_break_holder] --> Pioneer research on alloplasmic lines in wheat (<em>Triticum</em><!-- [et_pb_line_break_holder] --> <em>aestivum </em>L.) led to the discovery of cytoplasmic male<!-- [et_pb_line_break_holder] --> sterility associated to <em>Aegilops caudata </em>(Kihara, 1959).<!-- [et_pb_line_break_holder] --> At present, wheat has a large set of alloplasmic lines<!-- [et_pb_line_break_holder] --> providing an excellent tool for evaluating the genetic<!-- [et_pb_line_break_holder] --> effects of different cytoplasms (Tsunewaki, 2009).<!-- [et_pb_line_break_holder] --> Three alloplasmic wheat series involving <em>T. aestivum</em><!-- [et_pb_line_break_holder] --> nuclear genome and cytoplasms from <em>T. aestivum </em>subsp<em>.</em><!-- [et_pb_line_break_holder] --> <em>macha</em>, <em>Ae. ventricosa</em>, <em>Ae. squarrosa</em>, <em>Ae. uniaristata </em>and<!-- [et_pb_line_break_holder] --> <em>Hordeum chilense, </em>were used by Atienza <em>et al</em>. (2007) who<!-- [et_pb_line_break_holder] --> observed that plant height, flowering date and yield<!-- [et_pb_line_break_holder] --> per plant were least affected by the donor cytoplasm<!-- [et_pb_line_break_holder] --> of the <em>Triticum–Aegilops </em>complex than by <em>Hordeum</em><!-- [et_pb_line_break_holder] --> <em>chilense </em>cytoplasm, with the latter being associated<!-- [et_pb_line_break_holder] --> with detrimental effects on agronomic traits. On the<!-- [et_pb_line_break_holder] --> other hand, all the alloplasmic lines studied showed<!-- [et_pb_line_break_holder] --> significant differences for seed lutein content relative to<!-- [et_pb_line_break_holder] --> euplasmic controls, thus revealing the role of cytoplasm<!-- [et_pb_line_break_holder] --> genes on seed carotenoid content in wheat.<!-- [et_pb_line_break_holder] --> Soltani <em>et al</em>. (2016) used wheat alloplasmic lines<!-- [et_pb_line_break_holder] --> carrying the cytoplasm of <em>Aegilops mutica </em>along with an<!-- [et_pb_line_break_holder] --> integrated approach utilizing comparative quantitative<!-- [et_pb_line_break_holder] --> trait locus (QTL) and epigenome analysis in order to<!-- [et_pb_line_break_holder] --> evaluate the role of nuclear-cytoplasmic interactions<!-- [et_pb_line_break_holder] --> upon interspecific hybridization. Results showed that<!-- [et_pb_line_break_holder] --> cytoplasmic genomes modified the magnitude of QTL<!-- [et_pb_line_break_holder] --> controlling plant height, dry matter weight and number<!-- [et_pb_line_break_holder] --> of spikes per plant. Strikingly, when the methylation<!-- [et_pb_line_break_holder] --> profiles were compared between alloplasmic and<!-- [et_pb_line_break_holder] --> euplasmic lines, eight polymorphic regions associated<!-- [et_pb_line_break_holder] --> with transposable elements, stress responsive, and<!-- [et_pb_line_break_holder] --> metabolite pathways resulted affected by the cytoplasm<!-- [et_pb_line_break_holder] --> type. Taken together, results suggest that novel<!-- [et_pb_line_break_holder] --> nuclear-cytoplasmic interactions can trigger a potential<!-- [et_pb_line_break_holder] --> epigenetic modification in the nuclear genomes and<!-- [et_pb_line_break_holder] --> eventually change the genetic network controlling<!-- [et_pb_line_break_holder] --> physiological traits.<br /><!-- [et_pb_line_break_holder] --> In order to evaluate the effect of cytoplasmic<!-- [et_pb_line_break_holder] --> diversity on traits related to heat tolerance during the<!-- [et_pb_line_break_holder] --> reproductive stage Talukder <em>et al</em>. (2014) developed<!-- [et_pb_line_break_holder] --> cytoplasmic near isogenic lines (NIL) using ten different<!-- [et_pb_line_break_holder] --> cytoplasms and four different recurrent parents. Results<!-- [et_pb_line_break_holder] --> showed that cytoplasmic variations can contribute to an<!-- [et_pb_line_break_holder] --> increase in chlorophyll content and quantum efficiency<!-- [et_pb_line_break_holder] --> of photosystem II during heat stress and detected<!-- [et_pb_line_break_holder] --> interactions between cytoplasmic and nuclear genes,<!-- [et_pb_line_break_holder] --> thus emphasizing the potential of cytoplasmic sources<!-- [et_pb_line_break_holder] --> as components of any strategy to improve heat tolerance<!-- [et_pb_line_break_holder] --> in wheat.<!-- [et_pb_line_break_holder] --> In a recent work Takenaka <em>et al. </em>(2018) studied<!-- [et_pb_line_break_holder] --> cytoplasmic genetic diversity affecting seedling<!-- [et_pb_line_break_holder] --> emergence and growth under submergence stress.<!-- [et_pb_line_break_holder] --> Using a set of 37 nucleo-cytoplasmic hybrids carrying<!-- [et_pb_line_break_holder] --> the nuclear genome of the wheat cultivar Chinese<!-- [et_pb_line_break_holder] --> Spring and different cytoplasms of the <em>Triticum</em>-<!-- [et_pb_line_break_holder] --> <em>Aegilops </em>complex they found a significant diversity with<!-- [et_pb_line_break_holder] --> divergent cytoplasmic effects on submergence response.<!-- [et_pb_line_break_holder] --> While T2 cytoplasm of <em>Aegilops mutica </em>showed a positive<!-- [et_pb_line_break_holder] --> contribution to submergence tolerance, cytoplasms<!-- [et_pb_line_break_holder] --> of <em>Aegilops umbellulata </em>and related species caused a<!-- [et_pb_line_break_holder] --> greater inhibition. Evaluation of more nuclear genetic<!-- [et_pb_line_break_holder] --> backgrounds is needed to detect nuclear-cytoplasmic<!-- [et_pb_line_break_holder] --> interactions affecting this trait.<!-- [et_pb_line_break_holder] --> Using a different experimental approach, Bnejdi <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>. (2010) studied cytoplasmic effects affecting grain<!-- [et_pb_line_break_holder] --> resistance to yellow berry, a serious physiological<!-- [et_pb_line_break_holder] --> disorder in wheat and triticale, characterized by<!-- [et_pb_line_break_holder] --> softer, light colored and starchy endosperm, which<!-- [et_pb_line_break_holder] --> lacks the vitreous texture characteristic of normal<!-- [et_pb_line_break_holder] --> grains (Ammiraju <em>et al., </em>2002). In this case, the authors<!-- [et_pb_line_break_holder] --> employed parental, F1, reciprocal F1 (RF1), F2, reciprocal<!-- [et_pb_line_break_holder] --> F2 (RF2), BC1P1 and BC1P2 generations of four crosses<!-- [et_pb_line_break_holder] --> involving four cultivars of durum wheat.<br /> <!-- [et_pb_line_break_holder] --> Significant<!-- [et_pb_line_break_holder] --> cytoplasmic genetic effects were found in all crosses,<!-- [et_pb_line_break_holder] --> indicating that the choice of the female parent resistant<!-- [et_pb_line_break_holder] --> to yellow berry could significantly contribute to an<!-- [et_pb_line_break_holder] --> increase in resistance level.<!-- [et_pb_line_break_holder] --> Reciprocal crosses and the F1, F2, F3, BC1, and BC1F1<!-- [et_pb_line_break_holder] --> offspring were also used by Guo <em>et al. </em>(2017) to assess<!-- [et_pb_line_break_holder] --> the effect of an <em>Aegilops </em>cytoplasm on the expression<!-- [et_pb_line_break_holder] --> of the multi-ovary gene. Results showed that the<!-- [et_pb_line_break_holder] --> heterogeneous cytoplasm could suppress the expression<!-- [et_pb_line_break_holder] --> of the heterozygous, but not homozygous, dominant<!-- [et_pb_line_break_holder] --> multi-ovary gene. In a subsequent research, Guo <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>. (2018) used methylation-sensitive amplification<!-- [et_pb_line_break_holder] --> polymorphisms (MSAP) to assess the DNA methylation<!-- [et_pb_line_break_holder] --> status of the reciprocal crosses between <em>Aegilops </em>and<!-- [et_pb_line_break_holder] --> common wheat. The authors found that heterogeneous<!-- [et_pb_line_break_holder] --> cytoplasm significantly changed DNA methylation<!-- [et_pb_line_break_holder] --> patterns between the reciprocal crosses and suggested<!-- [et_pb_line_break_holder] --> that this epigenetic control plays a role in the suppression<!-- [et_pb_line_break_holder] --> of the multi-ovary gene.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3"><strong><font face="Arial, Helvetica, sans-serif">Rice<br /><!-- [et_pb_line_break_holder] --></font></strong><font face="Arial, Helvetica, sans-serif"><!-- [et_pb_line_break_holder] -->Although several CMS types have been described in<!-- [et_pb_line_break_holder] -->rice (<em>Oryza sativa </em>L.), the majority of hybrids were<!-- [et_pb_line_break_holder] -->developed using mainly WA (wild abortive type) and to<!-- [et_pb_line_break_holder] -->a lesser extent, BT (Boro type) and HL (Hong-Lian type)<!-- [et_pb_line_break_holder] -->male sterile cytoplasms (Tang <em>et al</em>., 2017). In a study<!-- [et_pb_line_break_holder] -->designed to analyze DNA methylation as affected by<!-- [et_pb_line_break_holder] -->male sterile cytoplasms in rice, Xu <em>et al</em>. (2013) compared<!-- [et_pb_line_break_holder] -->the extent and polymorphism of DNA methylation<!-- [et_pb_line_break_holder] -->between male sterile lines (A) carrying four different<!-- [et_pb_line_break_holder] -->cytoplasms and their maintainer lines (B) using the<!-- [et_pb_line_break_holder] -->MSAP technique. Results showed identical differences<!-- [et_pb_line_break_holder] -->in methylation between A and B lines at three sites in<!-- [et_pb_line_break_holder] -->all the analyzed cytoplasms, suggesting a relationship<!-- [et_pb_line_break_holder] -->of DNA methylation at these sites specifically with<!-- [et_pb_line_break_holder] -->male sterile cytoplasms, since cytoplasm is the only<!-- [et_pb_line_break_holder] -->difference between the A and B lines. Interestingly,<!-- [et_pb_line_break_holder] -->it was also found that different cytoplasms affected<!-- [et_pb_line_break_holder] -->DNA methylation to different levels, depending on the<!-- [et_pb_line_break_holder] -->genetic distance between the nucleus and the cytoplasm<!-- [et_pb_line_break_holder] -->of each cytoplasm type donor. Evidence of the effect of<!-- [et_pb_line_break_holder] -->male sterile cytoplasms on nuclear gene expression has<!-- [et_pb_line_break_holder] -->also been obtained by Hu <em>et al</em>. (2016) who analyzed the<!-- [et_pb_line_break_holder] -->anther transcript profiles of three <em>indica </em>rice alloplasmic<!-- [et_pb_line_break_holder] -->CMS lines and their maintainer line and found a set of<!-- [et_pb_line_break_holder] -->differentially expressed genes (DEGs) involved in anther<!-- [et_pb_line_break_holder] -->development.<!-- [et_pb_line_break_holder] --><br /><!-- [et_pb_line_break_holder] -->A common drawback associated with different<!-- [et_pb_line_break_holder] -->CMS in rice is panicle enclosure, in which part of the<!-- [et_pb_line_break_holder] -->panicle fails to exert from the sheath of the flag leaves,<!-- [et_pb_line_break_holder] -->leading to lower seed-setting rates and yield loss and<!-- [et_pb_line_break_holder] -->demanding gibberellin application for hybrid seed<!-- [et_pb_line_break_holder] -->production (Chen <em>et al</em>., 2013). The effects of male sterile<!-- [et_pb_line_break_holder] -->cytoplasms on quality traits of rice has been examined by<!-- [et_pb_line_break_holder] -->Waza and Jaisbal (2015) who compared the difference in<!-- [et_pb_line_break_holder] -->performance between 20A (WA-CMS line) x R (Restorer<!-- [et_pb_line_break_holder] -->line) hybrids and the corresponding B (Maintainer line)<!-- [et_pb_line_break_holder] -->x R (Restorer line) hybrids. In this study, WA cytoplasmic<!-- [et_pb_line_break_holder] -->influence for different traits was found to be highly<!-- [et_pb_line_break_holder] -->cross-specific, depending on the nuclear background of<!-- [et_pb_line_break_holder] -->the CMS line and the fertility restorer. Results showed<!-- [et_pb_line_break_holder] -->that WA cytoplasm had no significant influence on some<!-- [et_pb_line_break_holder] -->traits (head rice recovery, elongation ratio and aroma)<!-- [et_pb_line_break_holder] -->but it negatively affected others (hulling recovery,<!-- [et_pb_line_break_holder] -->milling recovery, kernel length before cooking, kernel<!-- [et_pb_line_break_holder] -->breadth before cooking, kernel length after cooking,<!-- [et_pb_line_break_holder] -->kernel breadth after cooking, alkali spread value and<!-- [et_pb_line_break_holder] -->amylose content) and exhibited both favorable and<!-- [et_pb_line_break_holder] -->unfavorable cytoplasmic effects depending upon the<!-- [et_pb_line_break_holder] -->parental combination (kernel length/breadth ratio<!-- [et_pb_line_break_holder] -->before and after cooking). The most significant effect of<!-- [et_pb_line_break_holder] -->WA cytoplasm was reduction in length of cooked kernel<!-- [et_pb_line_break_holder] -->followed by decrease in amylose content, which are two<!-- [et_pb_line_break_holder] -->undesirable quality traits.<!-- [et_pb_line_break_holder] --><br /><!-- [et_pb_line_break_holder] -->Narrow cytoplasmic genetic diversity observed both<!-- [et_pb_line_break_holder] -->in rice hybrids and varieties has led breeders to look<!-- [et_pb_line_break_holder] -->for new cytoplasmic resources and to characterize their<!-- [et_pb_line_break_holder] -->effects on traits of agronomic value (Huang <em>et al</em>., 2013;<!-- [et_pb_line_break_holder] -->Kumar <em>et al., </em>2013; Toriyama and Kazama, 2016; El-<!-- [et_pb_line_break_holder] -->Namaky, 2018). In order to study the effects of cytoplasm,<!-- [et_pb_line_break_holder] -->nucleus, and interaction between nucleus and cytoplasm<!-- [et_pb_line_break_holder] -->on agronomic traits in rice, Tao <em>et al. </em>(2004) evaluated<!-- [et_pb_line_break_holder] -->fifteen isolines obtained by crossing five widely used<!-- [et_pb_line_break_holder] --><em>japonica </em>cytoplasm resources as females by three distinct<!-- [et_pb_line_break_holder] --><em>japonica </em>rice cultivars followed by several backcrosses to<!-- [et_pb_line_break_holder] -->the male recurrent parent. Analysis of the results showed<!-- [et_pb_line_break_holder] -->that cytoplasms had significant effects on yield, width<!-- [et_pb_line_break_holder] -->of flag leaf, and low temperature tolerance. Besides,<!-- [et_pb_line_break_holder] -->significant effects of cytoplasm-nucleus interaction on<!-- [et_pb_line_break_holder] -->yield, plant height, and low temperature tolerance were<!-- [et_pb_line_break_holder] -->also found. In a similar research undertaken to analyze<!-- [et_pb_line_break_holder] -->eighteen isolines of <em>indica </em>rice obtained by backcrossing<!-- [et_pb_line_break_holder] -->six different cytoplasmic sources with three cultivars<!-- [et_pb_line_break_holder] -->as recurrent male parents, Tao <em>et al</em>. (2011) detected<!-- [et_pb_line_break_holder] -->significant effects of cytoplasms on 1000-grain weight,<!-- [et_pb_line_break_holder] -->which is a major component of yield and grain quality<!-- [et_pb_line_break_holder] -->in rice production. Additionally, a three-way interaction<!-- [et_pb_line_break_holder] -->between cytoplasms, nuclei and locations was found<!-- [et_pb_line_break_holder] -->for filled-grain ratio, emphasizing the need to evaluate<!-- [et_pb_line_break_holder] -->cytoplasmic effects in the nuclear backgrounds of<!-- [et_pb_line_break_holder] -->interest and at multiple locations.</font></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Sorghum</strong><br /><!-- [et_pb_line_break_holder] --> Evidence about cytoplasmic effects on agronomic traits<!-- [et_pb_line_break_holder] --> in sorghum (<em>Sorghum bicolor </em>L. Moench) has been mainly<!-- [et_pb_line_break_holder] --> obtained from research on male sterile cytoplasms.<!-- [et_pb_line_break_holder] --> Although several types of male sterile cytoplasms are<!-- [et_pb_line_break_holder] --> known in sorghum -A1, A2, A3, A4, A4M, A4VZM, A4G1,<!-- [et_pb_line_break_holder] --> A5, A6, 9E, M35 and KS- A1 is the most widely used for<!-- [et_pb_line_break_holder] --> commercial hybrid seed production followed by A2,<!-- [et_pb_line_break_holder] --> due to adverse effects on agronomic traits and poor<!-- [et_pb_line_break_holder] --> environmental stability of male fertility restoration<!-- [et_pb_line_break_holder] --> observed in the other types (Reddy <em>et al</em>., 2007; Kumar<!-- [et_pb_line_break_holder] --> <em>et al</em>., 2011; Elkonin and Tsvetova, 2012; Kozhemyakin<!-- [et_pb_line_break_holder] --> <em>et al.</em>, 2017; Kante <em>et al.</em>, 2018). The effect of cytoplasms<!-- [et_pb_line_break_holder] --> on performance of grain sorghum hybrids varies<!-- [et_pb_line_break_holder] --> according to different authors, although A3 hybrids<!-- [et_pb_line_break_holder] --> consistently showed reduced grain yield compared to<!-- [et_pb_line_break_holder] --> A1 and A2 hybrids. On the other hand, no adverse effects<!-- [et_pb_line_break_holder] --> associated with male sterile cytoplasms were observed<!-- [et_pb_line_break_holder] --> in biomass sorghum hybrids (Hoffman and Rooney,<!-- [et_pb_line_break_holder] --> 2013). Recently, Vacek and Rooney (2018) evaluated 16<!-- [et_pb_line_break_holder] --> isocytoplasmic bio-energy sorghum hybrids, each of<!-- [et_pb_line_break_holder] --> them carrying three different male sterile cytoplasms<!-- [et_pb_line_break_holder] --> A1, A2 and A3, to assess the effect of cytoplasm type<!-- [et_pb_line_break_holder] --> on the agronomic performance and quality. Results<!-- [et_pb_line_break_holder] --> showed that cytoplasms “per se” did not influence<!-- [et_pb_line_break_holder] --> any agronomic or composition trait; however, hybrid<!-- [et_pb_line_break_holder] --> by cytoplasm interactions were significant for several<!-- [et_pb_line_break_holder] --> traits, showing the importance to identify the best<!-- [et_pb_line_break_holder] --> cytoplasm and hybrid combination for sorghum use as<!-- [et_pb_line_break_holder] --> a biomass source.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> The effect of male sterile cytoplasms on resistance to<!-- [et_pb_line_break_holder] --> diseases and insect pests in sorghum has been studied<!-- [et_pb_line_break_holder] --> following different approaches. Durga <em>et al</em>. (2008)<!-- [et_pb_line_break_holder] --> studied the influence of male sterile cytoplasm on the<!-- [et_pb_line_break_holder] --> occurrence of leaf blight caused by <em>Exserohilum turcicum</em><!-- [et_pb_line_break_holder] --> (Pass) using paired cytoplasmic male-sterile (CMS) A<!-- [et_pb_line_break_holder] --> lines and maintainer (B) lines, which were crossed with<!-- [et_pb_line_break_holder] --> R-lines (restorers) to produce two types of hybrids: (A<!-- [et_pb_line_break_holder] --> x R) and (B x R), differing only in the cytoplasm type.<!-- [et_pb_line_break_holder] --> Although significant cytoplasmic effects were detected<!-- [et_pb_line_break_holder] --> for some disease related parameters (reduced lesion<!-- [et_pb_line_break_holder] --> length and lesion area), the overall disease damage<!-- [et_pb_line_break_holder] --> was not significantly different between genotypes with<!-- [et_pb_line_break_holder] --> male fertile and male sterile cytoplasm. Reddy <em>et al.</em><!-- [et_pb_line_break_holder] --> (2011) evaluated the effect of cytoplasms A1, A2, A3,<!-- [et_pb_line_break_holder] --> A4M, 4G, 4VZM on grain mold resistance using a set<!-- [et_pb_line_break_holder] --> of 72 hybrids obtained from the cross of 36 isonuclear<!-- [et_pb_line_break_holder] --> alloplasmic lines (A lines) by two restorer lines (R).<!-- [et_pb_line_break_holder] --> Results showed significant effects due to cytoplasms<!-- [et_pb_line_break_holder] -->“per se” and to their interactions with A lines, R lines<!-- [et_pb_line_break_holder] --> and years. A1 cytoplasm contributed to grain mold<!-- [et_pb_line_break_holder] --> resistance, followed by A4VZM and A2, indicating that<!-- [et_pb_line_break_holder] --> introduction of these two alternative cytoplasm to<!-- [et_pb_line_break_holder] --> hybrid sorghum production should not increase the risk<!-- [et_pb_line_break_holder] --> of grain mold. Insect resistance has also been evaluated<!-- [et_pb_line_break_holder] --> as influenced by different cytoplasm types in sorghum,<!-- [et_pb_line_break_holder] --> taking into account that A1 is highly susceptible to insect<!-- [et_pb_line_break_holder] --> pests (Dhillon <em>et al</em>., 2008). In the case of sorghum shoot<!-- [et_pb_line_break_holder] --> fly (<em>Atherigona soccata </em>(Rondani)) Sharma <em>et al</em>. (2006)<!-- [et_pb_line_break_holder] --> found that the expression of traits associated with<!-- [et_pb_line_break_holder] --> resistance in the F1 hybrids depends on the interactions<!-- [et_pb_line_break_holder] --> between cytoplasmic and nuclear genes and concluded<!-- [et_pb_line_break_holder] --> that resistance to shoot fly is needed in both parents to<!-- [et_pb_line_break_holder] --> develop shoot fly resistant hybrids. Akula <em>et al</em>. (2012)<!-- [et_pb_line_break_holder] --> evaluated four isogenic lines in four male-sterile<!-- [et_pb_line_break_holder] --> backgrounds, A1, A2, A3 and A4, and their corresponding<!-- [et_pb_line_break_holder] --> maintainer (B lines) lines. Results showed that the A4<!-- [et_pb_line_break_holder] --> cytoplasm was the least susceptible to sorghum shoot<!-- [et_pb_line_break_holder] -->fly as it was comparatively less preferred for oviposition<!-- [et_pb_line_break_holder] --> and had lower dead heart incidence than the other<!-- [et_pb_line_break_holder] --> cytoplasms tested. Mohammed <em>et al</em>. (2016) studied the<!-- [et_pb_line_break_holder] --> nature of gene action involved in shoot fly resistance<!-- [et_pb_line_break_holder] --> using a complete diallel design and found significant<!-- [et_pb_line_break_holder] --> reciprocal effects of combining abilities for oviposition,<!-- [et_pb_line_break_holder] --> leaf glossy score and trichome density, thus supporting<!-- [et_pb_line_break_holder] --> the influence of cytoplasmic factors in inheritance of<!-- [et_pb_line_break_holder] --> shoot fly resistance.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Potato</strong><!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> A PCR-based classification method using chloroplast<!-- [et_pb_line_break_holder] -->and mitochondrial DNA markers (Hosaka and Sanetomo,<!-- [et_pb_line_break_holder] -->2012; Sanetomo and Hosaka, 2013) distinguishes<!-- [et_pb_line_break_holder] -->cytoplasms of cultivated potatoes and closely related<!-- [et_pb_line_break_holder] -->wild species into six distinct types: M (an ancestral type<!-- [et_pb_line_break_holder] -->of Andean cultivated potatoes), P (derived from <em>Solanum</em><!-- [et_pb_line_break_holder] --> <em>phureja</em>), A (the most prevalent <em>Solanum tuberosum </em>ssp.<!-- [et_pb_line_break_holder] --> <em>andigena </em>type), W (wild species), T (the most prevalent<!-- [et_pb_line_break_holder] --> <em>Solanum tuberosum </em>ssp. <em>tuberosum </em>type), and D (derived<!-- [et_pb_line_break_holder] --> from <em>Solanum demissum</em>). Besides, potato mitochondrial<!-- [et_pb_line_break_holder] --> genomes have been classified in five types: α, β, γ, δ,<!-- [et_pb_line_break_holder] --> and κ (Lössl <em>et al., </em>2000). Cytoplasmic male sterility<!-- [et_pb_line_break_holder] --> has been reported in T/β cytoplasm, as well as in D and<!-- [et_pb_line_break_holder] --> W/γ-type derived from <em>S. stoloniferum</em>. T/β is the most<!-- [et_pb_line_break_holder] --> extended cytoplasm type in potato cultivars all over the<!-- [et_pb_line_break_holder] --> world except in German cultivars, due to the fact that<!-- [et_pb_line_break_holder] --> <em>S. demissum </em>and <em>S. stoloniferum </em>were broadly used in<!-- [et_pb_line_break_holder] --> German breeding programs for their resistance to late<!-- [et_pb_line_break_holder] --> blight and potato virus Y, respectively. Knowledge of the<!-- [et_pb_line_break_holder] --> cytoplasm types is necessary to prevent the cytoplasmic<!-- [et_pb_line_break_holder] --> invasion of male sterile types, which severely limits<!-- [et_pb_line_break_holder] --> the selection of male parents in breeding programs<!-- [et_pb_line_break_holder] --> (Hosaka and Sanetomo, 2012; Mihovilovich <em>et al</em>., 2015;<!-- [et_pb_line_break_holder] --> Anisimova and Gabrilenko, 2017).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Sanetomo and Gebhardt (2015) estimated the correlation<!-- [et_pb_line_break_holder] --> of cytoplasmic genomes with complex agronomic traits<!-- [et_pb_line_break_holder] --> using 1,217 cultivars and breeding clones of 6 different<!-- [et_pb_line_break_holder] --> populations. Results showed significant effects of<!-- [et_pb_line_break_holder] --> cytoplasm type on traits such as resistance to late blight<!-- [et_pb_line_break_holder] --> and tuber bruising, plant maturity, tuber shape, starch<!-- [et_pb_line_break_holder] --> content and yield. On the contrary, no cytoplasmic<!-- [et_pb_line_break_holder] --> difference was found for processing quality traits such<!-- [et_pb_line_break_holder] --> as chip color and reducing sugar content. In particular, it<!-- [et_pb_line_break_holder] --> was shown that the W/γ-type cytoplasm was correlated<!-- [et_pb_line_break_holder] --> with increased tuber starch content and later plant<!-- [et_pb_line_break_holder] --> maturity, while the D-type cytoplasm was correlated<!-- [et_pb_line_break_holder] --> with increased foliage resistance to late blight. W/γ <!-- [et_pb_line_break_holder] --> cytoplasm type was also found to be associated with<!-- [et_pb_line_break_holder] --> potato tuber yield, starch content and/or starch yield<!-- [et_pb_line_break_holder] --> when reproducibility of diagnostic nuclear DNA markers<!-- [et_pb_line_break_holder] --> was evaluated using an association mapping approach<!-- [et_pb_line_break_holder] --> (Schönhals <em>et al</em>., 2016).<!-- [et_pb_line_break_holder] --> Reciprocal crosses between cultivated potatoes and<!-- [et_pb_line_break_holder] --> diploid wild related species have been frequently used<!-- [et_pb_line_break_holder] --> to evaluate the cytoplasmic effects on agronomic traits.<!-- [et_pb_line_break_holder] --> Jansky (2011) found improved male fertility when <em>S.</em><!-- [et_pb_line_break_holder] --> <em>brevicaule </em>and <em>S. microdontum </em>were used as females<!-- [et_pb_line_break_holder] --> instead of <em>S. tuberosum</em>, but lower percentages of selected<!-- [et_pb_line_break_holder] --> clones and clones that tuberized when <em>S. chacoense </em>and <em>S.</em><!-- [et_pb_line_break_holder] --> <em>microdontum </em>were used as the female parents.<!-- [et_pb_line_break_holder] --> In the case of the crosses between <em>S. tuberosum </em>(T) and<!-- [et_pb_line_break_holder] --> the hexaploid <em>S. demissum </em>(D)<em>, </em>non-complete unilateral<!-- [et_pb_line_break_holder] --> incompatibility determines that seed is obtained<!-- [et_pb_line_break_holder] --> preferentially when the cultivated potato is used as<!-- [et_pb_line_break_holder] --> pollen donor. Moreover, apparent size differences<!-- [et_pb_line_break_holder] --> between DT and TD seeds are observed, the former being<!-- [et_pb_line_break_holder] --> significantly larger than the latter (Sanetomo <em>et al., </em>2011).<!-- [et_pb_line_break_holder] --> In order to shed light on the mechanisms involved in<!-- [et_pb_line_break_holder] --> such behavior, Sanetomo and Hosaka (2011) compared<!-- [et_pb_line_break_holder] --> reciprocal F1 hybrids TD and DT using methylationsensitive<!-- [et_pb_line_break_holder] --> amplified polymorphism (MSAP) analysis.<!-- [et_pb_line_break_holder] --> Their results showed differences both in DNA sequences<!-- [et_pb_line_break_holder] --> and in the DNA methylation level between TD and DT.<br /><!-- [et_pb_line_break_holder] --> Somatic hybridization is a powerful tool to overcome<!-- [et_pb_line_break_holder] --> the sexual barriers between the cultivated and wild<!-- [et_pb_line_break_holder] --> species. In a recent review, Tiwari <em>et al</em>. (2018) examined<!-- [et_pb_line_break_holder] --> research in somatic hybridization in potato during<!-- [et_pb_line_break_holder] --> the past 40 years. Data show that majority of somatic<!-- [et_pb_line_break_holder] --> hybrids follow recombination of mitochondrial genome<!-- [et_pb_line_break_holder] --> from both parents, and chloroplast pattern from only<!-- [et_pb_line_break_holder] --> one, except the recombination of the chloroplast<!-- [et_pb_line_break_holder] --> genome observed once in <em>S. tuberosum</em>-<em>S. vernei </em>somatic<!-- [et_pb_line_break_holder] --> hybrid. Given that the interaction between nuclear and<!-- [et_pb_line_break_holder] --> cytoplasmic genes from different species can affect<!-- [et_pb_line_break_holder] --> fertility and agronomic traits of somatic hybrids and<!-- [et_pb_line_break_holder] --> progenies, information on such interactions could be<!-- [et_pb_line_break_holder] --> useful when using somatic hybrids in breeding.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Brassicaceas</strong><br /><!-- [et_pb_line_break_holder] --> This family includes several vegetable crops: cabbage,<!-- [et_pb_line_break_holder] --> cauliflower and broccoli (<em>Brassica oleracea </em>var. <em>capitata</em><!-- [et_pb_line_break_holder] --> L., <em>var. botrytis </em>L. and <em>var. italica </em>Plenck, respectively),<!-- [et_pb_line_break_holder] --> turnip (<em>Brassica rapa </em>L. spp. <em>rapa</em>) and radish (<em>Raphanus</em><!-- [et_pb_line_break_holder] --> <em>sativus </em>L.) and an important oil crop, oilseed rape<!-- [et_pb_line_break_holder] --> (<em>Brassica napus </em>L.). Hybrid seed production in these crops<!-- [et_pb_line_break_holder] --> has been developed worldwide using Ogura male sterile<!-- [et_pb_line_break_holder] --> cytoplasm discovered in a Japanese radish (<em>Raphanus</em><!-- [et_pb_line_break_holder] --> <em>sativus </em>L.) and introgressed in <em>B. oleracea </em>by repeated<!-- [et_pb_line_break_holder] --> backcrosses (Yamagishi and Bhat, 2014; Kaminski <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>., 2016; Sekhon <em>et al., </em>2018). However, these initial<!-- [et_pb_line_break_holder] --> alloplasmic male sterile lines carrying Ogura cytoplasm<!-- [et_pb_line_break_holder] --> presented chlorophyll deficiency at low temperatures,<!-- [et_pb_line_break_holder] --> underdeveloped nectaries and malformed ovaries and<!-- [et_pb_line_break_holder] --> pods which reduced the seed set. Additionally, the same<!-- [et_pb_line_break_holder] --> defects were observed after Ogura cytoplasm transfer<!-- [et_pb_line_break_holder] --> into <em>B. napus</em>. It was then assumed that undesirable effects<!-- [et_pb_line_break_holder] --> were due to negative interactions between the <em>Brassica</em><!-- [et_pb_line_break_holder] --> nucleus and the <em>Raphanus </em>chloroplasts. Protoplasts<!-- [et_pb_line_break_holder] --> from a normal <em>B. napus </em>line were fused with protoplasts<!-- [et_pb_line_break_holder] --> from a CMS (Ogura radish cytoplasm) <em>B. napus</em>, and<!-- [et_pb_line_break_holder] --> protoplasts from a normal <em>B. oleracea </em>line were fused<!-- [et_pb_line_break_holder] --> with protoplasts from a CMS (Ogura radish cytoplasm) <em>B.</em><!-- [et_pb_line_break_holder] --> <em>oleracea</em>, in order to select cybrids carrying only <em>Brassica</em><!-- [et_pb_line_break_holder] --> chloroplasts that grew normally. These improved CMS<!-- [et_pb_line_break_holder] --> lines are known as Ogu-INRA and are widely used to<!-- [et_pb_line_break_holder] --> produce hybrids in <em>Brassicaceae </em>(Pelletier and Budar,<!-- [et_pb_line_break_holder] --> 2015). Similar advances have been achieved by Indian<!-- [et_pb_line_break_holder] --> breeders who developed and characterized several<!-- [et_pb_line_break_holder] --> Ogu-CMS lines in cauliflower and cabbage (Dey <em>et al</em>.,<!-- [et_pb_line_break_holder] --> 2017a; Bathia <em>et al</em>., 2015; Parkash <em>et al., </em>2015). Recently,<!-- [et_pb_line_break_holder] --> Dey <em>et al., </em>(2017b) reported that the introgression<!-- [et_pb_line_break_holder] --> of Ogura cytoplasm into the nuclear background of<!-- [et_pb_line_break_holder] --> cauliflower genotypes significantly affected nutritional<!-- [et_pb_line_break_holder] --> traits. However, the effects were genotype specific<!-- [et_pb_line_break_holder] --> suggesting the role of nuclear–cytoplasmic interaction<!-- [et_pb_line_break_holder] --> in expression of different quality traits. Thus, Ogura<!-- [et_pb_line_break_holder] --> cytoplasm interacted favorably in particular nuclear<!-- [et_pb_line_break_holder] --> backgrounds in expression of antioxidant capacities. On<!-- [et_pb_line_break_holder] --> the other hand, it had adverse effects for anthocyanin,<!-- [et_pb_line_break_holder] --> total chlorophyll content in most of the genotypes,<!-- [et_pb_line_break_holder] --> which is desirable in cauliflower but not in cabbage.<!-- [et_pb_line_break_holder] --> Besides, while ascorbic acid concentration was adversely<!-- [et_pb_line_break_holder] --> affected, total carotenoids and β-carotene concentration<!-- [et_pb_line_break_holder] --> were higher in most of the genotypes after introgression<!-- [et_pb_line_break_holder] --> of Ogura cytoplasm. Following a novel approach Singh<!-- [et_pb_line_break_holder] --> <em>et al</em>. (2018) combined CMS and doubled haploid inbred<!-- [et_pb_line_break_holder] --> lines to determine heterotic combinations for important<!-- [et_pb_line_break_holder] --> antioxidant compounds such as CUPRAC, FRAP,<!-- [et_pb_line_break_holder] --> phenols, carotenoids, anthocyanins and ascorbic acid in<!-- [et_pb_line_break_holder] --> cauliflower.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Interspecific and intergeneric crosses are commonly<!-- [et_pb_line_break_holder] --> used to exploit alloplasmic effects in plant breeding.<!-- [et_pb_line_break_holder] --> Chang <em>et al. </em>(2015) investigated the alloplasmic effect of<!-- [et_pb_line_break_holder] --> the cytoplasm of <em>B. juncea </em>and <em>B. napus </em>on heat and cold<!-- [et_pb_line_break_holder] --> toleranceof <em>B. carinata</em>, by comparing the performance<!-- [et_pb_line_break_holder] --> of alloplasmic and euplasmic lines of <em>B. carinata </em>for<!-- [et_pb_line_break_holder] --> a variety of physiological parameters. While plants<!-- [et_pb_line_break_holder] --> with cytoplasm of <em>B. napus </em>showed little difference<!-- [et_pb_line_break_holder] --> inheat tolerance, those with the cytoplasm of <em>B. juncea</em><!-- [et_pb_line_break_holder] --> displayed higher heat injury than the euplasmic lines.<!-- [et_pb_line_break_holder] --> Moreover, both alloplasmic lines showed decreased<!-- [et_pb_line_break_holder] --> cold tolerance than the euplasmic lines. Results<!-- [et_pb_line_break_holder] --> suggested that tolerance of extreme temperature stress<!-- [et_pb_line_break_holder] --> was controlled by the nucleus, the cytoplasm and the<!-- [et_pb_line_break_holder] --> interaction between maternal and nuclear genomes.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> In the case of oilseed rape, recent data have revealed<!-- [et_pb_line_break_holder] --> cytoplasmic effects on yield related traits and quality<!-- [et_pb_line_break_holder] --> traits, like number of seeds per pod, oil content, protein<!-- [et_pb_line_break_holder] --> content, glucosinolates, oleic acid, linolenic acid and<!-- [et_pb_line_break_holder] --> erucic acid (Ishaq <em>et al</em>., 2016; Guo <em>et al., </em>2017; Szała <em>et</em><!-- [et_pb_line_break_holder] --> <em>al., </em>2018).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Cucumber</strong><br /><!-- [et_pb_line_break_holder] -->In cucumber (<em>Cucumis sativus </em>L<em>.</em>) plastids and<!-- [et_pb_line_break_holder] -->mitochondria are inherited maternally and paternally,<!-- [et_pb_line_break_holder] -->respectively (Corriveau and Coleman, 1988; Havey<!-- [et_pb_line_break_holder] -->1997). Chilling tolerance was reported to display<!-- [et_pb_line_break_holder] -->maternal inheritance (Chung <em>et al</em>., 2003) so it was<!-- [et_pb_line_break_holder] -->postulated that chilling tolerance was associated with<!-- [et_pb_line_break_holder] -->the plastid genome. In order to identify candidate<!-- [et_pb_line_break_holder] -->plastid genomic regions, Chung <em>et al</em>. (2007) carried<!-- [et_pb_line_break_holder] -->out a comparative complete sequencing of chloroplast<!-- [et_pb_line_break_holder] -->DNA of a susceptible and a tolerant cucumber line and<!-- [et_pb_line_break_holder] -->found three polymorphic sites associated with the trait.<!-- [et_pb_line_break_holder] -->Afterwards, sdCAPS (simply derived cleaved amplified<!-- [et_pb_line_break_holder] -->polymorphic sequence) were developed converting<!-- [et_pb_line_break_holder] -->sequence data in PCR-based markers that were<!-- [et_pb_line_break_holder] -->successfully used to distinguish plastid types (Ali <em>et al</em>.,<!-- [et_pb_line_break_holder] -->2013; 2014). Therefore, breeding chilling tolerance into<!-- [et_pb_line_break_holder] -->elite cultivars by backcrossing may be effective for the<!-- [et_pb_line_break_holder] -->rapid introduction of plastomes conferring a tolerant<!-- [et_pb_line_break_holder] -->phenotype (Gordon and Staub, 2011; 2014).<!-- [et_pb_line_break_holder] --><br /><!-- [et_pb_line_break_holder] -->Diallel mating designs have been used to estimate<!-- [et_pb_line_break_holder] -->GCA, SCA, and reciprocal-cross effects for agronomic<!-- [et_pb_line_break_holder] -->traits in cucumber. Significant reciprocal effects were<!-- [et_pb_line_break_holder] -->reported for fresh and dry weight per plant (Shen <em>et al</em>.,<!-- [et_pb_line_break_holder] -->2015) and for internode length, leaf length, leaf width,<!-- [et_pb_line_break_holder] -->fruit length, fruit diameter, number of fruits per plant,<!-- [et_pb_line_break_holder] -->yield per fruit and yield per plant (Golabadi <em>et al</em>., 2015).<!-- [et_pb_line_break_holder] --><br /><!-- [et_pb_line_break_holder] -->Organelle omics generate a novel and promising field<!-- [et_pb_line_break_holder] -->for cucumber breeding. In this regard, a tiling microarray<!-- [et_pb_line_break_holder] -->comprising the whole cucumber chloroplast genome has<!-- [et_pb_line_break_holder] -->been developed and it has been used to study chloroplast<!-- [et_pb_line_break_holder] -->responses to abiotic stresses (Żmieńko <em>et al</em>., 2011).<!-- [et_pb_line_break_holder] -->Besides, cucumber plants regenerated from cell cultures<!-- [et_pb_line_break_holder] -->occasionally originate paternally transmitted mosaic<!-- [et_pb_line_break_holder] -->(MSC) phenotypes, characterized by slower growth,<!-- [et_pb_line_break_holder] -->chlorotic patterns on the leaves and fruit, lower fertility,<!-- [et_pb_line_break_holder] -->and rearrangements in their mitochondrial DNAs<!-- [et_pb_line_break_holder] -->(Malepszy <em>et al</em>., 1996; Lilly <em>et al</em>., 2001; Bartoszewski<!-- [et_pb_line_break_holder] --><em>et al</em>., 2004; 2007; Del Valle-Echeverria <em>et al</em>., 2015).<!-- [et_pb_line_break_holder] -->Analysis of nuclear gene expression in MSC mutants will<!-- [et_pb_line_break_holder] -->help to understand mitochondrial retrograde signaling<!-- [et_pb_line_break_holder] -->and will allow to identify genes associated with stress<!-- [et_pb_line_break_holder] -->responses and use them as potential selection targets<!-- [et_pb_line_break_holder] -->for breeding (Pawełkowicz <em>et al</em>., 2016; Mróz <em>et al</em>., 2018).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Onion</strong><!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> In onion (<em>Allium cepa </em>L.) two main sources of CMS -S<!-- [et_pb_line_break_holder] --> and T- have been mainly used in hybrid seed production.<!-- [et_pb_line_break_holder] --> S type results from the interaction of a cytoplasmic<!-- [et_pb_line_break_holder] --> factor S and a single nuclear restorer gene Ms (Jones<!-- [et_pb_line_break_holder] --> and Emsweller, 1936; Jones and Clarke, 1943). T type<!-- [et_pb_line_break_holder] --> is determined by the interaction of the cytoplasmic<!-- [et_pb_line_break_holder] --> factor T and two to three complementary restorer genes<!-- [et_pb_line_break_holder] --> (Berninger, 1965; Schweisguth, 1973). While S type is the<!-- [et_pb_line_break_holder] --> most widely used due to the relatively common occurrence<!-- [et_pb_line_break_holder] --> of the recessive allele at Ms, the stability of male sterility<!-- [et_pb_line_break_holder] --> over environments and no reduction of female fertility<!-- [et_pb_line_break_holder] --> (Goldman <em>et al</em>., 2000; Leite <em>et al</em>., 1999), T cytoplasm is<!-- [et_pb_line_break_holder] --> commercially used in Europe and Japan (Havey, 2000)<!-- [et_pb_line_break_holder] --> and is present in Brazilian onion populations (Fernandes<!-- [et_pb_line_break_holder] --> Santos <em>et al</em>., 2010). Moreover, new sources of CMS from<!-- [et_pb_line_break_holder] --> <em>Allium galanthum </em>(Havey, 1999) and <em>Allium rolyei </em>(Vu <em>et al</em>.,<!-- [et_pb_line_break_holder] --> 2012) have been identified making it possible to diversify<!-- [et_pb_line_break_holder] --> the cytoplasms used in hybrid seed production, to reduce<!-- [et_pb_line_break_holder] --> the risks of genetic uniformity associated to the major use<!-- [et_pb_line_break_holder] --> of S type (Havey, 2018). Recently, complete sequencing of<!-- [et_pb_line_break_holder] --> mitochondrial genomes of S, T and normal cytoplasms<!-- [et_pb_line_break_holder] --> has been achieved and a chimeric gene encoded by <em>orf 725</em><!-- [et_pb_line_break_holder] --> has been postulated as the common causal gene for CMS<!-- [et_pb_line_break_holder] --> induction in onions (Kim <em>et al</em>., 2016; Kim <em>et al., </em>2019).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Carrot</strong><br /><!-- [et_pb_line_break_holder] --> The main types of CMS in carrot (<em>Daucus carota </em>ssp. <em>sativus</em><!-- [et_pb_line_break_holder] --> L.) are “brown anther” (Sa), characterized by shriveled,<!-- [et_pb_line_break_holder] --> yellow-to-brown anthers with no pollen (Welch and<!-- [et_pb_line_break_holder] --> Grimball, 1947) and “petaloid” (Sp), in which anthers are<!-- [et_pb_line_break_holder] --> replaced by a whorl of petals (Thompson 1961; Peterson<!-- [et_pb_line_break_holder] --> and Simon, 1986). While “brown anther” type was found<!-- [et_pb_line_break_holder] --> in a lot of cultivars as well as in wild relatives, “petaloid”<!-- [et_pb_line_break_holder] --> type was only identified in wild relatives and has been<!-- [et_pb_line_break_holder] --> introduced into the nuclear genetic background of the<!-- [et_pb_line_break_holder] --> cultivated carrot (Linke <em>et al</em>., 2019). In addition to the two<!-- [et_pb_line_break_holder] --> main types, CMS-GUM, CMS-MAR and CMS-GAD (from<!-- [et_pb_line_break_holder] --> <em>D. carota subsp. gummifer, D. carota subsp. maritimus and D.</em><!-- [et_pb_line_break_holder] --> <em>carota subsp. gadecaei, respectively) </em>have been described<!-- [et_pb_line_break_holder] --> (Linke <em>et al</em>., 1999; Nothnagel <em>et al</em>., 2000).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Different hypotheses have been postulated to explain<!-- [et_pb_line_break_holder] --> restoration of fertility in carrot involving single or<!-- [et_pb_line_break_holder] --> multiple nuclear genes with complex interactions<!-- [et_pb_line_break_holder] --> (Thompson, 1961; Hansche and Gabelman, 1963; Börner<!-- [et_pb_line_break_holder] --> <em>et al</em>., 1995; Wolyn and Chahal, 1998). Alessandro <em>et al</em>.<!-- [et_pb_line_break_holder] --> (2013) found that restoration of “petaloid” cytoplasmic<!-- [et_pb_line_break_holder] --> male sterility was due to a single dominant gene, <em>Rf1</em>, and<!-- [et_pb_line_break_holder] --> developed a linkage map using molecular markers, some<!-- [et_pb_line_break_holder] --> of which can be applied in marker assisted selection<!-- [et_pb_line_break_holder] --> (MAS) in hybrid breeding programs.<!-- [et_pb_line_break_holder] --> Both “brown anther” and “petaloid” systems show<!-- [et_pb_line_break_holder] --> instability due to high temperatures, dry conditions,<!-- [et_pb_line_break_holder] --> growing time or long day conditions. Although hybrid<!-- [et_pb_line_break_holder] --> seed production is mainly based on the use of petaloid<!-- [et_pb_line_break_holder] --> CMS type because of less frequent reversion to male<!-- [et_pb_line_break_holder] --> fertility, seed yields on the brown-anther CMS are<!-- [et_pb_line_break_holder] --> generally higher (Havey, 2004; Dhall, 2010).<!-- [et_pb_line_break_holder] --> In a recent study carried out to determine the genetic<!-- [et_pb_line_break_holder] --> basis of carrot shoot growth, Turner <em>et al</em>. (2018)<!-- [et_pb_line_break_holder] --> analysed a diallel mating design and found highly<!-- [et_pb_line_break_holder] --> significant reciprocal effects in all the evaluated traits:<!-- [et_pb_line_break_holder] --> canopy height and width, shoot biomass, root biomass,<!-- [et_pb_line_break_holder] --> and the ratio of shoot: root biomass. Besides, significant<!-- [et_pb_line_break_holder] --> Reciprocal x E interactions were observed for canopy<!-- [et_pb_line_break_holder] --> height at harvest and fresh shoot biomass.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Sunflower</strong><br /><!-- [et_pb_line_break_holder] --> Although 72 sources of cytoplasmic male sterile<!-- [et_pb_line_break_holder] --> cytoplasm have been described by different authors in<!-- [et_pb_line_break_holder] --> sunflower (<em>Helianthus annuus</em>), nearly all hybrid seed<!-- [et_pb_line_break_holder] --> production relies on the use of a single male sterile<!-- [et_pb_line_break_holder] --> cytoplasm, PET1, derived from <em>Helianthus petiolaris </em>ssp.<!-- [et_pb_line_break_holder] --> <em>petiolaris </em>(Leclerq, 1969; Sabar <em>et al</em>., 2003; Serieys and<!-- [et_pb_line_break_holder] --> Christov, 2004). In this context, diversification of the<!-- [et_pb_line_break_holder] --> cytoplasmic background is desirable to avoid the risks<!-- [et_pb_line_break_holder] --> of genetic uniformity (Jan and Vick, 2007; Zhang <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>., 2010; Christov, 2013; Reddermann and Horn, 2018;<!-- [et_pb_line_break_holder] --> Makarenko <em>et al</em>., 2019).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Several reports have discussed the effects of different<!-- [et_pb_line_break_holder] --> cytoplasm sources on agronomic traits as a prerequisite<!-- [et_pb_line_break_holder] --> to their introgression in sunflower breeding programs.<!-- [et_pb_line_break_holder] --> Jan <em>et al. </em>(2014) evaluated twenty diverse cytoplasmic<!-- [et_pb_line_break_holder] --> substitution lines from six annual and six perennial<!-- [et_pb_line_break_holder] --> wild diploid <em>Helianthus </em>species for agronomic and oil<!-- [et_pb_line_break_holder] --> traits. Results showed that cytoplasms of perennial<!-- [et_pb_line_break_holder] --> species <em>H. mollis</em>, <em>H. grosseserratus</em>, <em>H. divaricatus </em>and<!-- [et_pb_line_break_holder] --> <em>H. angustifolius </em>had more adverse cytoplasmic effects<!-- [et_pb_line_break_holder] --> affecting agronomic traits. In contrast, cytoplasms from<!-- [et_pb_line_break_holder] --> annual species had no adverse effects. Additionally, ten<!-- [et_pb_line_break_holder] --> alien CMS sources from annual species, wild <em>H. annuus</em><!-- [et_pb_line_break_holder] --> accessions and perennial species were tested and yieldreducing<!-- [et_pb_line_break_holder] --> cytoplasmic effects were only observed in<!-- [et_pb_line_break_holder] --> perennial <em>H. maximiliani </em>and annual <em>H. annuus </em>PI 413178<!-- [et_pb_line_break_holder] --> and PI 413024. No significant cytoplasmic effects were<!-- [et_pb_line_break_holder] --> detected in oil percentage and fatty acid composition.<!-- [et_pb_line_break_holder] --> These data support the exploitation of wild annual<!-- [et_pb_line_break_holder] --> <em>Helianthus </em>species to broaden cytoplasmic diversity in<!-- [et_pb_line_break_holder] --> sunflower breeding.<!-- [et_pb_line_break_holder] --> Tyagi <em>et al. </em>(2015a) used nine CMS sources to<!-- [et_pb_line_break_holder] --> develop CMS alloplasmic lines, here designated as CMS<!-- [et_pb_line_break_holder] --> analogues, by crossing them by a common maintainer<!-- [et_pb_line_break_holder] --> line followed by repeated backcrossing. The CMS<!-- [et_pb_line_break_holder] --> analogues, carrying the same nuclear genotype and<!-- [et_pb_line_break_holder] --> different cytoplasmic genomes, were evaluated in the<!-- [et_pb_line_break_holder] --> field for 21 morphological, agronomic, physiological<!-- [et_pb_line_break_holder] --> and quality traits. Significant differences between CMS<!-- [et_pb_line_break_holder] --> analogues were detected for all the traits. The genetic<!-- [et_pb_line_break_holder] --> parameters analysis indicated that selection for grain<!-- [et_pb_line_break_holder] --> yield accompanied with high harvest index, large head<!-- [et_pb_line_break_holder] --> size and biological yield can be effectively used from<!-- [et_pb_line_break_holder] --> these sources for genetic improvement in sunflower. The<!-- [et_pb_line_break_holder] --> same CMS sources were evaluated under water stress<!-- [et_pb_line_break_holder] --> conditions (Tyagi <em>et al</em>., 2015b) and it was found that<!-- [et_pb_line_break_holder] --> CMS-XA (unknown origin), E002-91 (<em>H. annuus</em>), ARG-<!-- [et_pb_line_break_holder] --> 3A (<em>H. argophyllus</em>) PHIR-27A (<em>H. praecox </em>ssp <em>hirtus</em>)<!-- [et_pb_line_break_holder] --> and PRUN-29A (<em>H. praecox </em>ssp. <em>runyonii</em>) presented<!-- [et_pb_line_break_holder] --> significantly higher yield than the common maintainer<!-- [et_pb_line_break_holder] --> line, making them potentially useful to develop efficient<!-- [et_pb_line_break_holder] --> water use CMS lines. Furthermore, the effects of<!-- [et_pb_line_break_holder] --> cytoplasmic sources on the estimation of combining<!-- [et_pb_line_break_holder] --> ability for agronomic traits and stability under different<!-- [et_pb_line_break_holder] --> environments were also evaluated (Tyagi and Dhillon,<!-- [et_pb_line_break_holder] --> 2017; Tyagi <em>et al</em>., 2018).<br /><!-- [et_pb_line_break_holder] --> A research by Velasco <em>et al. </em>(2007) analyzed the<!-- [et_pb_line_break_holder] --> relationships between fatty acid profile and seed oil<!-- [et_pb_line_break_holder] --> content in F1s and F2s of reciprocal crosses between<!-- [et_pb_line_break_holder] --> CAS-3, a high stearic acid mutant and ADV-37, a high<!-- [et_pb_line_break_holder] --> seed oil content inbred line. Results demonstrated the<!-- [et_pb_line_break_holder] --> existence of cytoplasmic effects in the genetic control<!-- [et_pb_line_break_holder] --> of oil content both at the F1 and F2 plant level. On the<!-- [et_pb_line_break_holder] --> contrary, cytoplasmic effects on stearic acid content<!-- [et_pb_line_break_holder] --> were only observed at the F1 but not at the F2 plant level,<!-- [et_pb_line_break_holder] --> a difference which may be due to small environmental<!-- [et_pb_line_break_holder] --> influence, sampling deviations or to the effect of<!-- [et_pb_line_break_holder] --> maternal rather than cytoplasmic genetic effects. Ferfuia<!-- [et_pb_line_break_holder] --> and Vannozzi (2015) studied seed fatty acid composition<!-- [et_pb_line_break_holder] --> in seeds from reciprocal F1s, F2s and BC populations<!-- [et_pb_line_break_holder] --> between two high oleic inbred lines under different<!-- [et_pb_line_break_holder] --> environmental conditions. Results showed that oleic acid<!-- [et_pb_line_break_holder] --> percentage was affected by cytoplasmic or cytoplasmic<!-- [et_pb_line_break_holder] --> x nuclear interaction. In particular, the expression of<!-- [et_pb_line_break_holder] --> nuclear genes affecting oleic acid percentage, <em>OLs </em>and/<!-- [et_pb_line_break_holder] --> or <em>Olm</em>, was modified by temperature and cytoplasm<!-- [et_pb_line_break_holder] --> genotype.<br /><!-- [et_pb_line_break_holder] --> Another trait of interest for sunflower breeding is the<!-- [et_pb_line_break_holder] --> regeneration ability for “<em>in vitro</em>” culture. In order to<!-- [et_pb_line_break_holder] --> evaluate the effect of different cytoplasmic background<!-- [et_pb_line_break_holder] --> on the regeneration ability in sunflower, Cravero <em>et al</em>.<!-- [et_pb_line_break_holder] --> (2012) tested seven alloplasmic CMS lines introgressed<!-- [et_pb_line_break_holder] --> into the inbred line HA89 and one fertile cytoplasm<!-- [et_pb_line_break_holder] --> (<em>H. annuus</em>) under different <em>in vitro </em>culture conditions,<!-- [et_pb_line_break_holder] --> detecting cytoplasm by culture media interaction for<!-- [et_pb_line_break_holder] --> the regeneration percentage and productivity rates. The<!-- [et_pb_line_break_holder] --> authors concluded that the non-nuclear genome could<!-- [et_pb_line_break_holder] --> be considered as another source of variability modifying<!-- [et_pb_line_break_holder] --> the regeneration ability of recalcitrant sunflower<!-- [et_pb_line_break_holder] --> genotypes.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Soybean</strong><!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Several sources of CMS have been described in soybean<!-- [et_pb_line_break_holder] -->(<em>Glycine max </em>L. Merr): RNTED, ZD 83-19, N8855, N21566,<!-- [et_pb_line_break_holder] --> N23168 and N23661. Several hybrid soybean cultivars<!-- [et_pb_line_break_holder] --> developed in China using CMS yielded 20% more than<!-- [et_pb_line_break_holder] --> control varieties. However, both a low out cross pod-set<!-- [et_pb_line_break_holder] --> rate in the existing CMS lines and the influence of day<!-- [et_pb_line_break_holder] --> length and temperature on male sterility of some CMS<!-- [et_pb_line_break_holder] --> lines and male fertility of F1 hybrids have delayed hybrid<!-- [et_pb_line_break_holder] --> seed production in soybean to date (Bai and Gai, 2006;<!-- [et_pb_line_break_holder] --> Zhao and Gai, 2006; Dong <em>et al</em>., 2012; Nie <em>et al</em>., 2017).<!-- [et_pb_line_break_holder] --> Stay-green mutants show impaired chlorophyll<!-- [et_pb_line_break_holder] --> degradation during leaf senescence and seed maturation<!-- [et_pb_line_break_holder] --> and they can affect seed maturation, seed oil quality,<!-- [et_pb_line_break_holder] --> and meal quality in oil crops (Delmas <em>et al., </em>2013). Among<!-- [et_pb_line_break_holder] --> the stay-green mutants described in soybean, green<!-- [et_pb_line_break_holder] --> cotyledon gene <em>cytG </em>is maternally inherited (Terao,<!-- [et_pb_line_break_holder] --> 1918). Sequencing of the chloroplast genome revealed<!-- [et_pb_line_break_holder] --> a 5-bp insertion causing a frame-shift in <em>psbM </em>gene,<!-- [et_pb_line_break_holder] --> which encodes one of the small subunits of photosystem<!-- [et_pb_line_break_holder] --> II, thus linking photosynthesis in pre-senescent leaves<!-- [et_pb_line_break_holder] --> with chlorophyll degradation during leaf senescence<!-- [et_pb_line_break_holder] --> and seed maturation (Kohzuma <em>et al</em>., 2017).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Significant reciprocal effects on physiological<!-- [et_pb_line_break_holder] --> characters such as CO2 exchange rates, intercellular CO2<!-- [et_pb_line_break_holder] --> concentration, stomatal conductance, transpiration,<!-- [et_pb_line_break_holder] --> plant height, number of branches, fertile nodes, filled<!-- [et_pb_line_break_holder] --> pods, seeds per plant, weight of seeds per plant and<!-- [et_pb_line_break_holder] --> weight of 100 seeds were detected in soybean by diallel<!-- [et_pb_line_break_holder] --> analysis (Karyawati <em>et al</em>., 2015). Using the same analysis<!-- [et_pb_line_break_holder] --> Cruz <em>et al. </em>(2011) found significant reciprocal effects on<!-- [et_pb_line_break_holder] --> resistance to Asian soybean rust (<em>Phakopsora pachyrhizi</em>)<!-- [et_pb_line_break_holder] --> and suggested the involvement of cytoplasmic or<!-- [et_pb_line_break_holder] --> maternal effects on this trait.<!-- [et_pb_line_break_holder] --> Xu <em>et al</em>. (2011) looked for QTLs for the seed size traits<!-- [et_pb_line_break_holder] --> in soybean using F2:3, F2:4 and F2:5 populations from<!-- [et_pb_line_break_holder] --> the direct and reciprocal crosses and employing a multi-<!-- [et_pb_line_break_holder] --> QTL joint analysis (MJA) along with composite interval<!-- [et_pb_line_break_holder] --> mapping (CIM). These authors detected cytoplasmic<!-- [et_pb_line_break_holder] --> effects on seed length, seed width, seed thickness and<!-- [et_pb_line_break_holder] --> the ratios length to thickness and width to thickness, but<!-- [et_pb_line_break_holder] --> not on the ratio length to width. Besides, 92 cytoplasmby-<!-- [et_pb_line_break_holder] --> QTL interactions were detected, 28 of which were<!-- [et_pb_line_break_holder] --> consistent with main effect QTLs detected by CIM.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Cotton</strong><br /><!-- [et_pb_line_break_holder] --> Most recognized CMS systems in cotton are CMS-D2<!-- [et_pb_line_break_holder] --> and CMS-D8, that were developed by transferring<!-- [et_pb_line_break_holder] --> the cytoplasm of wild species <em>Gossypium harknessii</em><!-- [et_pb_line_break_holder] --> Brandegee and <em>Gossypium trilobum </em>(DC) Skovst,<!-- [et_pb_line_break_holder] --> respectively, into tetraploid upland cotton <em>Gossypium</em><!-- [et_pb_line_break_holder] --> <em>hirsutum </em>(Wang <em>et al., </em>2010; Wu <em>et al.</em>, 2017; Yang <em>et al</em>.,<!-- [et_pb_line_break_holder] --> 2018). Regarding the effect of male sterile cytoplasms on<!-- [et_pb_line_break_holder] --> agronomic traits Tuteja and Banga (2011) evaluated four<!-- [et_pb_line_break_holder] --> D2 type male sterile lines (A) and their corresponding<!-- [et_pb_line_break_holder] --> maintainer lines (B) crossed as paired crosses with eight<!-- [et_pb_line_break_holder] --> restorer lines (R). Cytoplasmic effects were estimated<!-- [et_pb_line_break_holder] --> by comparing (A × R) and (B × R) hybrids combinations.<!-- [et_pb_line_break_holder] --> Results indicated that although male sterile cytoplasm<!-- [et_pb_line_break_holder] --> had a significant unfavorable effect on number of bolls,<!-- [et_pb_line_break_holder] --> boll weight, yield and fiber quality traits in some of the<!-- [et_pb_line_break_holder] --> cross combinations, performance of male sterilitybased<!-- [et_pb_line_break_holder] --> hybrids in cotton is governed by the interaction<!-- [et_pb_line_break_holder] --> of nuclear genes with the sterility-inducing cytoplasm,<!-- [et_pb_line_break_holder] --> making it more appropriate to test the CMS lines in<!-- [et_pb_line_break_holder] --> newer combinations rather than converting the female<!-- [et_pb_line_break_holder] --> parents of released hybrids into male sterile lines.<!-- [et_pb_line_break_holder] --> Recently, a comparison between cytoplasmic effects<!-- [et_pb_line_break_holder] --> of D2 and D8 on lint yield and fiber quality was done<!-- [et_pb_line_break_holder] --> by Zhang <em>et al</em>. (2019) using eight pairs of reciprocal<!-- [et_pb_line_break_holder] --> hybrids obtained from crosses between two restorer<!-- [et_pb_line_break_holder] --> lines carrying D2 and D8 cytoplasm and four commercial<!-- [et_pb_line_break_holder] --> cotton cultivars. Analysis of results demonstrated that<!-- [et_pb_line_break_holder] --> D2 cytoplasm had mild negative effects on lint yield and<!-- [et_pb_line_break_holder] --> its component, but it had beneficial effects on most of<!-- [et_pb_line_break_holder] --> the fiber quality traits. On the other hand, the negative<!-- [et_pb_line_break_holder] --> effects of D8 cytoplasm on lint yield and its components<!-- [et_pb_line_break_holder] --> were more profound than D2 cytoplasm, with no effect<!-- [et_pb_line_break_holder] --> on quality traits (except for a reduction in micronaire),<!-- [et_pb_line_break_holder] --> thus presenting important challenges for hybrid cotton<!-- [et_pb_line_break_holder] --> breeding.<br /><!-- [et_pb_line_break_holder] --> Complete diallel designs have frequently been used<!-- [et_pb_line_break_holder] --> to determine the mode of gene action for agronomic<!-- [et_pb_line_break_holder] --> traits in cotton. Using this approach, significant<!-- [et_pb_line_break_holder] --> reciprocal effects have been detected for fiber length,<!-- [et_pb_line_break_holder] --> fiber strength, fiber elongation and fiber fineness and<!-- [et_pb_line_break_holder] --> lint percentage (Shaukat <em>et al</em>., 2013), monopodia branch<!-- [et_pb_line_break_holder] --> length (Zangi <em>et al</em>., 2010), days to first flowering,<!-- [et_pb_line_break_holder] --> seeds, locule-1 and lint percentage (Khan <em>et al</em>., 2011).<!-- [et_pb_line_break_holder] --> Using another approach, Wu <em>et al</em>. (2010) designed<!-- [et_pb_line_break_holder] --> an additive and dominance (AD) genetic model with<!-- [et_pb_line_break_holder] --> cytoplasmic effects to estimate genetic effects on several<!-- [et_pb_line_break_holder] --> seed traits in F3 hybrids of 13 cotton chromosome<!-- [et_pb_line_break_holder] --> substitution lines crossed with five elite cultivars.<!-- [et_pb_line_break_holder] --> Significant cytoplasmic effects were detected for seed<!-- [et_pb_line_break_holder] --> oil content, oil index, seed index, seed volume, and seed<!-- [et_pb_line_break_holder] --> embryo percentage. </font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>PERSPECTIVES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Current knowledge and methods available make it<!-- [et_pb_line_break_holder] --> possible to envisage greater opportunities to select<!-- [et_pb_line_break_holder] --> not just the best nuclear genotypes but also the best<!-- [et_pb_line_break_holder] --> cytonuclear interactions, by considering the information<!-- [et_pb_line_break_holder] --> of all the genomes present in different plant cell<!-- [et_pb_line_break_holder] --> compartments. Characterization of genetic diversity of<!-- [et_pb_line_break_holder] --> chloroplast and mitochondrial genomes can be easily<!-- [et_pb_line_break_holder] --> achieved by modern “omics” technologies. Besides,<!-- [et_pb_line_break_holder] --> assessment of the additive and epistatic effects of<!-- [et_pb_line_break_holder] --> cytoplasmic genes on traits of interest is facilitated by the<!-- [et_pb_line_break_holder] --> development of specific genetic designs and statistical<!-- [et_pb_line_break_holder] --> models. In addition, molecular markers associated<!-- [et_pb_line_break_holder] --> with cytoplasm types can be applied in Marker Assisted<!-- [et_pb_line_break_holder] --> Selection (MAS) schemes to increase the efficiency of<!-- [et_pb_line_break_holder] --> their incorporation in breeding programs. As it has been<!-- [et_pb_line_break_holder] --> suggested by Kersten <em>et al</em>. (2016), the availability of<!-- [et_pb_line_break_holder] --> the genomic information of all three DNA-containing<!-- [et_pb_line_break_holder] --> cell organelles will allow a holistic approach in plant<!-- [et_pb_line_break_holder] --> breeding in the future. This perspective will contribute<!-- [et_pb_line_break_holder] --> to optimize the use of genetic resources and will allow<!-- [et_pb_line_break_holder] --> increasing genetic cytoplasmic diversity to reduce the<!-- [et_pb_line_break_holder] --> vulnerability of crops to potential biotic and abiotic<!-- [et_pb_line_break_holder] --> risks.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong><font size="2">REFERENCES</font></strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">1. Akula U.V., Poluru P.G., Jangam A.K., Jagannath P.V. (2012) Influence<!-- [et_pb_line_break_holder] --> of types of sterile cytoplasm on the resistance to sorghum shoot fly<!-- [et_pb_line_break_holder] --> (<em>Atherigona soccata</em>). Plant Breed. 131: 94-99.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 2. Ali A., Yang E.M., Lee S.Y., Chung S.M. (2013) Evaluation of chloroplast<!-- [et_pb_line_break_holder] --> genotypes of Korean cucumber cultivars (<em>Cucumis sativus </em>L.) using<!-- [et_pb_line_break_holder] --> sdCAPS markers related to chilling tolerance. Kor. J. Hort. Sci. Technol.<!-- [et_pb_line_break_holder] --> 31: 219-223.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 3. Ali A., Yang E.M., Bang S.W., Chung S. M., Staub J.E. (2014) Assessment of<!-- [et_pb_line_break_holder] --> chilling injury and molecular marker analysis in cucumber cultivars<!-- [et_pb_line_break_holder] --> (<em>Cucumis sativus </em>L.). Kor. J. Hort. Sci. Technol. 32: 227-234.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 4. Allen J.F. (2015) Why chloroplasts and mitochondria retain their own<!-- [et_pb_line_break_holder] --> genomes and genetic systems: Colocation for redox regulation of gene<!-- [et_pb_line_break_holder] --> expression. Proc. Natl. Acad. Sci. U.S.A. 112: 10231-10238.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 5. Allen J.O. (2005) Effect of Teosinte Cytoplasmic Genomes on Maize<!-- [et_pb_line_break_holder] --> Phenotype. Genetics 169: 863-880.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 6. Allen J.O., Fauron C.M., Minx P., Roark L., Oddiraju S., Lin G.N., Meyer L.,<!-- [et_pb_line_break_holder] --> Sun H., Kim K., Wang C., Du F., Xu D., Gibson M., Cifrese J., Clifton S.W.,<!-- [et_pb_line_break_holder] --> Newton K.J. (2007) Comparisons among two fertile and three malesterile<!-- [et_pb_line_break_holder] --> mitochondrial genomes of maize. Genetics 177: 1173-1192.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 7. Alessandro M.S., Galmarini C.R., Iorizzo M., Simon P.W. (2013) Molecular<!-- [et_pb_line_break_holder] --> mapping of vernalization requirement and fertility restoration genes<!-- [et_pb_line_break_holder] --> in carrot. Theor. Appl. Genet. 126: 415-423.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 8. Ammiraju J.S.S., Dholakia B.B., Jawdekar G., Santra D.K., Gupta V.S.,<!-- [et_pb_line_break_holder] --> Roder M.S., Singh H., Lagu M.D., Dhaliwa H.S., Rao V.S.,Ranjekar P.K.<!-- [et_pb_line_break_holder] --> (2002) Inheritance and identification of DNA markers associated with<!-- [et_pb_line_break_holder] --> yellow berry tolerance in wheat (<em>Triticum aestivum </em>L.). Euphytica 123:<!-- [et_pb_line_break_holder] --> 229–223.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 9. Anisimova I.N., Gavrilenko T.A. (2017) Cytoplasmic male sterility and<!-- [et_pb_line_break_holder] --> prospects for its utilizationin potato breeding, genetic studies and<!-- [et_pb_line_break_holder] --> hybrid seed production. Russ. J. Genet. Appl. Res.7: 721-735.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 10. Archibald, J.M. (2015) Endosymbiosis and eukaryotic cell evolution. Curr.<!-- [et_pb_line_break_holder] --> Biol. 25: R911-R921.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 11. Atienza S.G., Martin A., Pecchioni N., Platani C., Cattivelli L. (2007) The<!-- [et_pb_line_break_holder] --> nuclear–cytoplasmic interaction controls carotenoid content in<!-- [et_pb_line_break_holder] --> wheat. Euphytica 159: 325-331.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 12. Bai Y.N., Gai J.Y. (2006) Development of a new cytoplasmic-nuclear<!-- [et_pb_line_break_holder] --> male-sterility line of soybean and inheritance of its male-fertility<!-- [et_pb_line_break_holder] --> restorability. Plant Breed. 125: 85-88.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 13. Bartoszewski G., Malepszy S., Havey M.J. (2004) Mosaic (MSC)<!-- [et_pb_line_break_holder] --> cucumbers regenerated from independent cell cultures possess<!-- [et_pb_line_break_holder] --> different mitochondrial rearrangements. Curr. Genet. 45: 45–53.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 14. Bartoszewski G., Havey M.J., Ziółkowska A., Długosz M., Malepszy S.<!-- [et_pb_line_break_holder] --> (2007) The selection of mosaic (MSC) phenotype after passage of<!-- [et_pb_line_break_holder] --> cucumber (<em>Cucumis sativus </em>L.) through cell culture—a method to<!-- [et_pb_line_break_holder] --> obtain plant mitochondrial mutants. J. Appl. Genet. 48: 1–9.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 15. Beltrán J., Wamboldt Y., Sanchez R., LaBrant E.W., Kundariya H., Virdi<!-- [et_pb_line_break_holder] --> K.S., Elowsky C., Mackenzie S.A. (2018) Specialized plastids trigger<!-- [et_pb_line_break_holder] --> tissue-specific signaling for systemic stress response in plants. Plant<!-- [et_pb_line_break_holder] --> Physiol. 178: 672-683.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">16. Berninger E. (1965) Contribution à l’étude de<!-- [et_pb_line_break_holder] --> la stérilité mâle de l’oignon (<em>Allium cepa </em>L.).<!-- [et_pb_line_break_holder] --> Ann. Amélior. Plant. 15: 183-199.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 17. Bhatia R., Dey S.S., Sharma P.C., Kumar R. (2015)<!-- [et_pb_line_break_holder] --> <em>In v</em>itro maintenance of CMS lines of Indian<!-- [et_pb_line_break_holder] --> cauliflower: an alternative for conventional<!-- [et_pb_line_break_holder] --> CMS-based hybrid seed production. J. Hortic.<!-- [et_pb_line_break_holder] --> Sci. Biotechnol. 90: 171-179.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 18. Birky C.W. (1995) Uniparental inheritance<!-- [et_pb_line_break_holder] --> of mitochondrial and chloroplast genes.<!-- [et_pb_line_break_holder] --> Mechanisms and evolution. Proc. Natl. Acad.<!-- [et_pb_line_break_holder] --> Sci. U.S.A. 92: 11331-11338.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 19. Blanco N.E., Guinea-Dıaz M., Whelan L.,<!-- [et_pb_line_break_holder] --> Strand A. (2014) Interaction between plastid<!-- [et_pb_line_break_holder] --> and mitochondrial retrograde signaling<!-- [et_pb_line_break_holder] --> pathways during changes to plastid redox<!-- [et_pb_line_break_holder] --> status. Philos. Trans. R. Soc. Lond. B Biol. Sci.<!-- [et_pb_line_break_holder] --> 369:20130231.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 20. Bnejdi F., Saadoun M., El Gazzah M. (2010)<!-- [et_pb_line_break_holder] --> Cytoplasmic effects on grain resistance to<!-- [et_pb_line_break_holder] --> yellowberry in durum wheat. Czech. J. Genet.<!-- [et_pb_line_break_holder] --> Plant Breed. 46:145-148.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 21. Bock D.G., Andrew R.L., Rieseberg L.H. (2014)<!-- [et_pb_line_break_holder] --> On the adaptive value of cytoplasmic<!-- [et_pb_line_break_holder] --> genomes in plants. Mol. Ecol. 23:4899-4911.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 22. Bohra A., Jha U.C., Adhimoolam P., Bisht D.,<!-- [et_pb_line_break_holder] --> Singh N.P. (2016) Cytoplasmic male sterility<!-- [et_pb_line_break_holder] --> (CMS) in hybrid breeding in field crops. Plant<!-- [et_pb_line_break_holder] --> Cell Rep. 35: 967-993.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 23. Börner T., Linke B., Nothnagel T., Scheike,<!-- [et_pb_line_break_holder] --> Schulz B., Steinborn R., Brennicke A., Stein<!-- [et_pb_line_break_holder] --> M., Wricke G. (1995) Inheritance of nuclear<!-- [et_pb_line_break_holder] --> and cytoplasmic factors affecting male<!-- [et_pb_line_break_holder] --> sterility in <em>Daucus carota</em>. In; Kück U., Wricke<!-- [et_pb_line_break_holder] --> G. (Eds.) Genetic mechanisms for hybrid<!-- [et_pb_line_break_holder] --> breeding. Adv. Plant Breeding 18. Blackwell<!-- [et_pb_line_break_holder] --> Science, Berlin, pp. 111-122.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 24. Botterman J., Leemans J. (1988) Engineering of<!-- [et_pb_line_break_holder] --> herbicide resistance in plants. Biotech. Gen.<!-- [et_pb_line_break_holder] --> Eng. Rev. 6:321-340.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 25. Boussardon C.,Martin-Magniette M-L., Godin<!-- [et_pb_line_break_holder] --> B.,Benamar A., Vittrant B., Citerne S.,Mary-<!-- [et_pb_line_break_holder] --> Huard T., Macherel D., Rajjou L., Budar F.<!-- [et_pb_line_break_holder] --> (2019) Novel cytonuclear combinations<!-- [et_pb_line_break_holder] --> modify<em> Arabidopsis thaliana</em>seed<!-- [et_pb_line_break_holder] --> physiologyand vigor. Front. Plant Sci. 10:32.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 26. Brunkard J.O., Burch-Smith T.M. (2018) Ties<!-- [et_pb_line_break_holder] --> that bind: the integration of plastid signaling<!-- [et_pb_line_break_holder] --> pathways in plant cell metabolism. Essays<!-- [et_pb_line_break_holder] --> Biochem. 62: 95-107.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 27. Bruns H.A. (2017) Southern corn leaf blight:<!-- [et_pb_line_break_holder] --> astory worth retelling. Agron. J. 109:1-7.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 28. Cabral P.D.S., do Amaral Júnior A.T.; Duarte<!-- [et_pb_line_break_holder] --> Vieira H., Saltires Santos J., Freitas I. L. de J.,<!-- [et_pb_line_break_holder] --> Gonzaga Pereira M. (2013). Genetic effects<!-- [et_pb_line_break_holder] --> on seed quality in diallel crosses of popcorn.<!-- [et_pb_line_break_holder] --> Ciênc. Agrotec. 37: 502-511.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 29. Calugar R., Rotar I., Has V. (2016) Cytoplasmic<!-- [et_pb_line_break_holder] --> diversification effect on certain plant<!-- [et_pb_line_break_holder] --> vegetative traits of some maize (<em>Zea mays </em>l.)<!-- [et_pb_line_break_holder] --> inbred lines. Res. J. Agric. Sci. 48:28-35.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 30. Cervantes Ortiz F., García De los Santos G.,<!-- [et_pb_line_break_holder] --> Carballo-Carballo A., Bergvinson D., Crossa<!-- [et_pb_line_break_holder] --> J.L., Mendoza-Elos M., Moreno-Martínez<!-- [et_pb_line_break_holder] --> E. (2007) Herencia del vigor de plántula y<!-- [et_pb_line_break_holder] --> su relación con caracteres de planta adulta<!-- [et_pb_line_break_holder] --> en líneas endogámicas de maíz tropical.<!-- [et_pb_line_break_holder] --> Agrociencia 41: 425-433.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 31. Chandra-Shekara A.C., Prasanna B.M., Singh<!-- [et_pb_line_break_holder] --> B.B., Unnikrishnan K.V., Seetharam A.<!-- [et_pb_line_break_holder] --> (2007) Effect of cytoplasm and cytoplasmnuclear<!-- [et_pb_line_break_holder] --> interaction on combining ability and<!-- [et_pb_line_break_holder] --> heterosis for agronomic traits in pearl millet<!-- [et_pb_line_break_holder] --> <em>Pennisetum glaucum </em>(L) Br. R. Euphytica<!-- [et_pb_line_break_holder] --> 153:15-26.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 32. Chang C., Sun D., Kakihara F., Hondo K. (2015)<!-- [et_pb_line_break_holder] --> Cytoplasmic effects of <em>Brassica napus </em>and <em>B.</em><!-- [et_pb_line_break_holder] --> <em>juncea </em>on extreme temperature stresses of <em>B.</em><!-- [et_pb_line_break_holder] --> <em>carinata</em>. Euphytica 204:335-342.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 33. Chen H., Jiang S., Zheng J., Lin Y. (2013)<!-- [et_pb_line_break_holder] --> Improving panicle exertion of rice<!-- [et_pb_line_break_holder] --> cytoplasmic male sterile line by combination<!-- [et_pb_line_break_holder] --> of artificial microRNA and artificial target<!-- [et_pb_line_break_holder] --> mimic. Plant Biotechnol. J. 11:336-343.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 34. Chen Z., Zhao N., Li S., Grover C.E., Nie H.,<!-- [et_pb_line_break_holder] --> Wendel J.F., Hua J. (2017) Plant mitochondrial<!-- [et_pb_line_break_holder] --> genome evolution and cytoplasmic male<!-- [et_pb_line_break_holder] --> sterility. Crit. Rev. Plant Sci. 36: 55-69.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 35. Chettoor A. M., Phillips A. R., Coker C. T.,<!-- [et_pb_line_break_holder] --> Dilkes B., Evans M. M. (2016) Maternal<!-- [et_pb_line_break_holder] --> gametophyte effects on seed development in<!-- [et_pb_line_break_holder] --> maize. Genetics 204: 233-48.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 36. Chi W., Feng P., Ma J., Zhang L. (2015)<!-- [et_pb_line_break_holder] --> Metabolites and chloroplast retrograde<!-- [et_pb_line_break_holder] --> signaling. Curr. Opin. Plant Biol.25:32–38.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 37. Christov M. (2013) Contribution of interspecific<!-- [et_pb_line_break_holder] --> and intergeneric hybridization to sunflower<!-- [et_pb_line_break_holder] --> breeding. Helia 36: 1-18.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 38. Chung S.M., Staub J.E., Fazio G. (2003)<!-- [et_pb_line_break_holder] --> Inheritance of chilling injury: a maternally<!-- [et_pb_line_break_holder] --> inherited trait in cucumber. J. Amer. Soc.<!-- [et_pb_line_break_holder] --> Hort. Sci. 128:526-530.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 39. Chung S.M., Gordon V.S., Staub J.E. (2007)<!-- [et_pb_line_break_holder] --> Sequencing cucumber (<em>Cucumis sativus </em>L.)<!-- [et_pb_line_break_holder] --> chloroplast genomes identifies difference<!-- [et_pb_line_break_holder] --> between chilling-tolerant and -susceptible<!-- [et_pb_line_break_holder] --> cucumber lines. Genome 50:215-225.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 40. Corriveau J.P., Coleman A.W. (1988) Rapid<!-- [et_pb_line_break_holder] --> screening method to detect potential<!-- [et_pb_line_break_holder] --> biparental inheritance of plastid DNA and<!-- [et_pb_line_break_holder] --> results for over 200 Angiosperm species. Am.<!-- [et_pb_line_break_holder] --> J. Bot. 75: 1443-1458.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">41. Cravero V., Nestares G., Zorzoli R., Picardi<!-- [et_pb_line_break_holder] -->L. (2012) Verifying the influence of the<!-- [et_pb_line_break_holder] -->cytoplasmon the regeneration ability in<!-- [et_pb_line_break_holder] -->sunflower. HELIA 35: 9-18.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 42. Crawford T., Lehotai N., Strand A. (2018) The<!-- [et_pb_line_break_holder] --> role of retrograde signals during plant stress<!-- [et_pb_line_break_holder] --> responses. J. Exp. Bot. 69: 2783-2795.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 43. Crosatti C., Quansah L., Maré C., Giusti L.,<!-- [et_pb_line_break_holder] --> Roncaglia E., Atienza S. G., Cattivelli L., Fait<!-- [et_pb_line_break_holder] --> A. (2013) Cytoplasmic genome substitution in<!-- [et_pb_line_break_holder] --> wheat affects the nuclear-cytoplasmic crosstalk<!-- [et_pb_line_break_holder] --> leading to transcript and metabolite<!-- [et_pb_line_break_holder] --> alterations. BMC genomics 14: 868.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 44. Cruz M.F. A. da., Souza G. A. de., Rodrigues F. Á.,<!-- [et_pb_line_break_holder] --> Sediyama C. S., Barros E. G. de. (2011) Reação<!-- [et_pb_line_break_holder] --> de genótipos de soja à infecção natural por<!-- [et_pb_line_break_holder] --> ferrugem asiática. Pesq. Agropec. Bras. 46:<!-- [et_pb_line_break_holder] --> 215-218.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 45. Daniell H., Lin C. S., Yu M., Chang W. J. (2016)<!-- [et_pb_line_break_holder] --> Chloroplast genomes: diversity, evolution,<!-- [et_pb_line_break_holder] --> and applications in genetic engineering.<!-- [et_pb_line_break_holder] --> Genome Biol. 17:134.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 46. de Abreu, V. M., Von Pinho E. V. de R., Mendes-<!-- [et_pb_line_break_holder] --> Resende M.P., Balestre M., Lima A.C., Santos<!-- [et_pb_line_break_holder] --> H. O., Von Pinho R.G. (2019) Combining<!-- [et_pb_line_break_holder] --> ability and heterosis of maize genotypes<!-- [et_pb_line_break_holder] --> under water stress during seed germination<!-- [et_pb_line_break_holder] --> and seedling emergence. Crop Sci. 59: 33-43.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 47. de la Torre M.V., Biasutti C.A. (2015) Efectos<!-- [et_pb_line_break_holder] --> recíprocos y aptitud combinatoria en<!-- [et_pb_line_break_holder] --> caracteres relacionados al vigor temprano<!-- [et_pb_line_break_holder] --> y al rendimiento en grano en maíz.<!-- [et_pb_line_break_holder] --> AgriScientia 32: 41-53</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 48. de Souza A., Wang J.Z., Dehesh K. (2017)<!-- [et_pb_line_break_holder] --> Retrograde signals: integrators of<!-- [et_pb_line_break_holder] --> interorganellar communication and<!-- [et_pb_line_break_holder] --> orchestrators of plant development. Annu.<!-- [et_pb_line_break_holder] --> Rev. Plant Biol. 68:85-108.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 49. Del Valle-Echevarria A., Kiełkowska A.,<!-- [et_pb_line_break_holder] --> Bartoszewski G., Havey M.J. (2015) The<!-- [et_pb_line_break_holder] --> mosaic mutants of cucumber: a method to<!-- [et_pb_line_break_holder] --> produce knock-downs of mitochondrial<!-- [et_pb_line_break_holder] --> transcripts. G3 5: 1211-1221.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 50. Delmas F., Sankaranarayanan S., Deb S.,<!-- [et_pb_line_break_holder] --> Widdup E., Bournonville C., Bollier N.,<!-- [et_pb_line_break_holder] --> Northey J.G., McCourt P., Samuel M.A. (2013)<!-- [et_pb_line_break_holder] --> ABI3 controls embryo degreening through<!-- [et_pb_line_break_holder] --> Mendel’s I locus. Proc. Natl. Acad. Sci. U.S.A.<!-- [et_pb_line_break_holder] --> 110: E3888-E3894.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 51. Dey S., Bhatia R., Bhardwaj I., Mishra V.,<!-- [et_pb_line_break_holder] --> Sharma K., Parkash C., Kumar S., Sharma<!-- [et_pb_line_break_holder] --> V.K., Kumar R. (2017a) Molecular-agronomic<!-- [et_pb_line_break_holder] --> characterization and genetic study reveals<!-- [et_pb_line_break_holder] --> usefulness of refined Ogura cytoplasm based<!-- [et_pb_line_break_holder] --> CMS lines in hybrid breeding of cauliflower<!-- [et_pb_line_break_holder] --> (<em>Brassica oleracea </em>var. <em>botryti</em>s L.).Sci.<!-- [et_pb_line_break_holder] --> Hort.224: 27-36.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 52. Dey S.S., Bhatia R., Prakash C., Sharma S.,<!-- [et_pb_line_break_holder] --> Dabral M., Mishra V.. Bhardwaj I., Sharma<!-- [et_pb_line_break_holder] --> K., Sharma V.K., Kumar R. (2017b) Alteration<!-- [et_pb_line_break_holder] --> in important quality traits and antioxidant<!-- [et_pb_line_break_holder] --> activities in <em>Brassica oleracea </em>with Ogura<!-- [et_pb_line_break_holder] --> cybrid cytoplasm. Plant Breed. 136: 400-409.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 53. Dhall R.K. (2010) Status of male sterility in<!-- [et_pb_line_break_holder] --> vegetables for hybrid development. A review.<!-- [et_pb_line_break_holder] --> Adv. Hort. Sci. 24: 263-279.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">54. Dhillon M.K., Sharma H.C., Smith C.M. (2008)<!-- [et_pb_line_break_holder] --> Implications of cytoplasmic male-sterility<!-- [et_pb_line_break_holder] --> systems for development and deployment<!-- [et_pb_line_break_holder] --> of pest resistant hybrids in cereals. CAB Rev.<!-- [et_pb_line_break_holder] --> Perspect. Agric. Vet. Sci. Nutrit. Nat. Res. 3<!-- [et_pb_line_break_holder] --> (068): 1-16.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 55. Dobler R., Rogell B., Budar F., Dowling D.K<!-- [et_pb_line_break_holder] --> (2014) A meta-analysis of the strength and<!-- [et_pb_line_break_holder] --> nature of cytoplasmic genetic effects. J. Evol.<!-- [et_pb_line_break_holder] --> Biol. 27: 2021-2034.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 56. Dong D., Li Z., Yuan F., Zhu S., Chen P., Yu W.,<!-- [et_pb_line_break_holder] --> Yang Q.H., Fu X.J., Yu X.M., Li B.Q., Zhu,<!-- [et_pb_line_break_holder] --> D.H. (2012) Inheritance and fine mapping<!-- [et_pb_line_break_holder] --> of a restorer-of-fertility (<em>Rf</em>) gene for the<!-- [et_pb_line_break_holder] --> cytoplasmic male sterility in soybean. Plant<!-- [et_pb_line_break_holder] --> Sci. 188: 36-40.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 57. Durga K. K., Reddy B. V. S., Reddy M. S. S., Ganesh<!-- [et_pb_line_break_holder] --> M. (2008) Influence of cytoplasm on the<!-- [et_pb_line_break_holder] --> occurrence of leaf blight (<em>Exserohilum turcicum</em><!-- [et_pb_line_break_holder] --> (PASS.)) in sorghum (<em>Sorghumbicolor </em>(L.)<!-- [et_pb_line_break_holder] --> MOENCH). Indian J. Agric. Res., 42: 97-101.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 58. Eeckhaut T., Lakshmanan P. S., Deryckere D.,<!-- [et_pb_line_break_holder] --> Van Bockstaele E., Van Huylenbroeck J.<!-- [et_pb_line_break_holder] --> (2013) Progress in plant protoplast research.<!-- [et_pb_line_break_holder] --> Planta 238: 991-1003.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 59. Elkonin L. A., Tsvetova M. I. (2012) Heritable<!-- [et_pb_line_break_holder] --> effect of plant water availability conditions<!-- [et_pb_line_break_holder] --> on restoration of male fertility in the “9E”<!-- [et_pb_line_break_holder] --> CMS-inducing cytoplasm of sorghum. Front.<!-- [et_pb_line_break_holder] --> Plant Sci. 3: 91.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 60. El-Namaky R. (2018) The genetic variability<!-- [et_pb_line_break_holder] --> of floral and agronomic characteristics of<!-- [et_pb_line_break_holder] --> newly-bred cytoplasmic male sterile rice.<!-- [et_pb_line_break_holder] --> Agriculture 8: 68.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 61. Fan X.M., Zhang Y. D., Yao W. H., Bi Y. Q., Liu L.,<!-- [et_pb_line_break_holder] --> Chen H.M., Kang M. S. (2014) Reciprocal<!-- [et_pb_line_break_holder] --> diallel crosses impact combining ability,<!-- [et_pb_line_break_holder] --> variance estimation, and heterotic group<!-- [et_pb_line_break_holder] --> classification. Crop Sci. 54: 89-97.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 62. Ferfuia C., Vannozzi G.P. (2015) Maternal effect<!-- [et_pb_line_break_holder] --> on seed fatty acid composition in a reciprocal<!-- [et_pb_line_break_holder] --> cross of high oleic sunflower (<em>Helianthus</em><!-- [et_pb_line_break_holder] --> <em>annuus </em>L.). Euphytica 205: 325-336.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 63. Fernandes Santos C.A., Lopes Leite D.,<!-- [et_pb_line_break_holder] --> Rodrigues Oliveira V., Amorim Rodrigues<!-- [et_pb_line_break_holder] --> M. (2010) Marker-assisted selection of<!-- [et_pb_line_break_holder] --> maintainer lines within and onion tropical<!-- [et_pb_line_break_holder] --> population. Sci. Agric. (Piracicaba, Braz.) 67:<!-- [et_pb_line_break_holder] --> 223-227.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 64. Figueiredo D. D., Köhler C. (2016) Bridging the<!-- [et_pb_line_break_holder] --> generation gap: communication between<!-- [et_pb_line_break_holder] --> maternal sporophyte, female gametophyte<!-- [et_pb_line_break_holder] --> and fertilization products. Curr. Opin. Plant<!-- [et_pb_line_break_holder] --> Biol. 29: 16-20.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 65. Frei U., Peiretti E. G., Wenzel G. (2003)<!-- [et_pb_line_break_holder] --> Significance of cytoplasmic DNA in plant<!-- [et_pb_line_break_holder] --> breeding. Plant Breed. Rev. 21:175-210.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 66. Gabay-Laughnan S., Laughnan J.R. (1994) The<!-- [et_pb_line_break_holder] --> male sterility and restorer genes in maize.<!-- [et_pb_line_break_holder] --> In: Freeling M., Walbot V. (Eds.) The maize<!-- [et_pb_line_break_holder] --> handbook. Springer, New York, pp. 418-423.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 67. Gao Z. S., Cai H. W., Liang G. H. (2005) Field<!-- [et_pb_line_break_holder] --> assay of seedling and adult-plant resistance<!-- [et_pb_line_break_holder] --> to southern leaf blight in maize. Plant Breed.<!-- [et_pb_line_break_holder] --> 124: 356-360.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 68. Golabadi M., Golkar P., Eghtedary A. (2015)<!-- [et_pb_line_break_holder] --> Combining ability analysis of fruit yield<!-- [et_pb_line_break_holder] --> and morphological traits in greenhouse<!-- [et_pb_line_break_holder] --> cucumber (<em>Cucumis sativus </em>L.). Can. J. Plant<!-- [et_pb_line_break_holder] --> Sci. 95: 377-385.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 69. Goldman L., Schroeck G., Havey M.J. (2000)<!-- [et_pb_line_break_holder] --> History of public onion breeding programs<!-- [et_pb_line_break_holder] --> and pedigree of public onion germplasm<!-- [et_pb_line_break_holder] --> releases in the United States. Plant Breed.<!-- [et_pb_line_break_holder] --> Rev. 20: 67-103.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 70. Gordon V.S., Staub J.E. (2011) Comparative<!-- [et_pb_line_break_holder] --> analysis of chilling response in cucumber<!-- [et_pb_line_break_holder] --> through plastidic and nuclear genetic effects<!-- [et_pb_line_break_holder] --> component analysis. J. Amer.Soc.Hort.Sci.<!-- [et_pb_line_break_holder] --> 136: 256-264.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 71. Gordon V.S., Staub J.E. (2014) Backcross<!-- [et_pb_line_break_holder] --> introgression of plastomic factors<!-- [et_pb_line_break_holder] --> controlling chilling tolerance into elite<!-- [et_pb_line_break_holder] --> cucumber (<em>Cucumis sa</em>tivus L.) germplasm:<!-- [et_pb_line_break_holder] --> early generation recovery of recurrent parent<!-- [et_pb_line_break_holder] --> phenotype. Euphytica 195:217-234.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 72. Greiner S. (2012) Plastome mutants of higher<!-- [et_pb_line_break_holder] --> plants. In: Bock R., Knoop V. (Eds.) Genomics<!-- [et_pb_line_break_holder] --> of chloroplasts and mitochondria. Advances<!-- [et_pb_line_break_holder] --> in Photosynthesis and Respiration, 35.<!-- [et_pb_line_break_holder] --> Springer, Dordrecht, pp. 237-266.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 73. Greiner S., Bock R. (2013) Tuning a menage a<!-- [et_pb_line_break_holder] --> trois: co-evolution and co-adaptation of<!-- [et_pb_line_break_holder] --> nuclear and organellar genomes in plants.<!-- [et_pb_line_break_holder] --> Bioessays 35: 354-365.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 74. Greiner S., Sobanski J., Bock R. (2014) Why<!-- [et_pb_line_break_holder] --> are most organelle genomes transmitted<!-- [et_pb_line_break_holder] --> maternally? Bioessays 37: 80-94.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 75. Griffing B. (1956) Concept of general and<!-- [et_pb_line_break_holder] --> specific combining ability in relation to a<!-- [et_pb_line_break_holder] --> diallel crossing system. Aust. J. Biol. Sci. 9:<!-- [et_pb_line_break_holder] --> 463-493.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 76. Gualberto J.M., Mileshina D., Wallet C., Niazi<!-- [et_pb_line_break_holder] --> A.K., Weber-Lofti F., Dietrich A. (2014) The<!-- [et_pb_line_break_holder] --> plant mitochondrial genome: dynamics and<!-- [et_pb_line_break_holder] --> maintenance. Biochimie 100: 107-120.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 77. Guo J., Li Z., Zhang G., Tang H., Song O., Song<!-- [et_pb_line_break_holder] --> Y., Ma S-., Niu N., Wang J. (2017) Special<!-- [et_pb_line_break_holder] --> heterogeneous cytoplasm suppresses the<!-- [et_pb_line_break_holder] --> expression of the gene producing multiovary<!-- [et_pb_line_break_holder] --> in common wheat. Euphytica 213:247.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 78. Guo J., Zhang G., Tang H., Song Y., Ma S., Niu N.,<!-- [et_pb_line_break_holder] --> Wang J. (2018) Changes in DNA methylation<!-- [et_pb_line_break_holder] --> are associated with heterogeneous cytoplasm<!-- [et_pb_line_break_holder] --> suppression of the multi-ovary gene in<!-- [et_pb_line_break_holder] --> wheat (<em>Triticum aestivum</em>). Crop Pasture Sci.<!-- [et_pb_line_break_holder] --> 69: 354-361.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 79. Guo Y., Si P., Wang N., Wen J., Yi B., Ma B., Tu<!-- [et_pb_line_break_holder] --> J., Zou J., Fu T., Shen J. (2017) Genetic effects<!-- [et_pb_line_break_holder] --> and genotype× environment interactions<!-- [et_pb_line_break_holder] --> govern seed oil content in <em>Brassica napus </em>L.<!-- [et_pb_line_break_holder] --> BMC Genet. 18: 1.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 80. Hansche P.E., Gabelman W.H. (1963) Digenic<!-- [et_pb_line_break_holder] --> control of male sterility in carrots, <em>Daucus</em><!-- [et_pb_line_break_holder] --> <em>carota </em>L. Crop Sci. 3: 383-386.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 81. Havey M.J. (1997) Predominant paternal<!-- [et_pb_line_break_holder] --> transmission of the mitochondrial genome<!-- [et_pb_line_break_holder] --> in cucumber. J. Hered. 88: 232-235.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 82. Havey M.J. (1999) Seed yield, floral morphology<!-- [et_pb_line_break_holder] --> and lack of male-fertility restoration of<!-- [et_pb_line_break_holder] --> male-sterile onion (<em>Allium cepa</em>) populations<!-- [et_pb_line_break_holder] --> possessing the cytoplasm of <em>Allium</em><!-- [et_pb_line_break_holder] --> <em>galanthum</em>. J. Amer. Soc. Hort. Sci. 124: 626-<!-- [et_pb_line_break_holder] --> 629.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 83. Havey M.J. (2000) Diversity among malesterility-<!-- [et_pb_line_break_holder] --> inducing and male-fertile<!-- [et_pb_line_break_holder] --> cytoplasms of onion. Theor. Appl. Genet. 101:<!-- [et_pb_line_break_holder] --> 778-782.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 84. Havey M.J. (2004) The use of cytoplasmic male<!-- [et_pb_line_break_holder] --> sterility for hybrid seed production. In:<!-- [et_pb_line_break_holder] --> Daniell H., Chase C. (Eds.) Molecular biology<!-- [et_pb_line_break_holder] --> and biotechnology of plant organelles.<!-- [et_pb_line_break_holder] --> Springer, Dordrecht, pp. 623-634.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 85. Havey M.J. (2018) Onion breeding. In: Goldman<!-- [et_pb_line_break_holder] --> I. (Ed.) Plant breeding reviews, 42. John<!-- [et_pb_line_break_holder] --> Wiley & Sons Inc., New Jersey. pp. 39-85.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 86. Hayman B. I. (1954) The theory and analysis of<!-- [et_pb_line_break_holder] --> diallel crosses. Genetics 39: 789-809.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 87. Hoffmann L. Jr, Rooney W.L. (2013) Cytoplasm<!-- [et_pb_line_break_holder] --> has no effect on the yield and quality of<!-- [et_pb_line_break_holder] --> biomass sorghum hybrids. J. Sustain.<!-- [et_pb_line_break_holder] --> Bioenergy Syst. 3: 129-134.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 88. Hosaka K., Sanetomo R. (2012) Development<!-- [et_pb_line_break_holder] --> of a rapid identification method for potato<!-- [et_pb_line_break_holder] --> cytoplasm and its use for evaluating<!-- [et_pb_line_break_holder] --> Japanese collections. Theor. Appl. Genet. 125:<!-- [et_pb_line_break_holder] --> 1237-1251.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 89. Hu J., Chen G., Zhang H., Qian Q., Ding Y.<!-- [et_pb_line_break_holder] --> (2016) Comparative transcript profiling<!-- [et_pb_line_break_holder] --> of alloplasmic male-sterile lines revealed<!-- [et_pb_line_break_holder] --> altered gene expression related to pollen<!-- [et_pb_line_break_holder] --> development in rice (<em>Oryza sativa </em>L.). BMC<!-- [et_pb_line_break_holder] --> Plant Biol. 16: 175.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 90. Huang F., Fu X., Efisue A., Zhang S., Jin D. (2013)<!-- [et_pb_line_break_holder] --> Genetically characterizing a new indica<!-- [et_pb_line_break_holder] --> cytoplasmic male sterility with cytoplasm<!-- [et_pb_line_break_holder] --> for its potential use in hybrid rice production.<!-- [et_pb_line_break_holder] --> Crop Sci. 53: 132-140.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 91. Ishaq M., Razia R., Khan S.A. (2016) Exploring<!-- [et_pb_line_break_holder] --> genotypic variations for improved oil content<!-- [et_pb_line_break_holder] --> and healthy fatty acids composition in<!-- [et_pb_line_break_holder] --> rapeseed (<em>Brassica napus </em>L.). J. Sci. Food Agric.<!-- [et_pb_line_break_holder] --> 97: 1924-1930.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 92. Jan C. C., Seiler G.J., Hammond J.J. (2014) Effect<!-- [et_pb_line_break_holder] --> of wild <em>Helianthus </em>cytoplasms on agronomic<!-- [et_pb_line_break_holder] --> and oil characteristics of cultivated<!-- [et_pb_line_break_holder] --> sunflower (<em>Helianthus annuus </em>L.). Plant<!-- [et_pb_line_break_holder] --> Breed. 133: 262-267.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">93. Jan C.C., Vick B.A. (2007) Inheritance and<!-- [et_pb_line_break_holder] --> allelic relationships of fertility restoration<!-- [et_pb_line_break_holder] --> genes for seven newsources of male-sterile<!-- [et_pb_line_break_holder] --> cytoplasm in sunflower. Plant Breed. 126:<!-- [et_pb_line_break_holder] --> 213-217.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 94. Jansky S. (2011) Parental effects on the<!-- [et_pb_line_break_holder] --> performance of cultivated and wild species<!-- [et_pb_line_break_holder] --> hybrids in potato. Euphytica 178: 273-281.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 95. Jones H., Emsweller S. (1936) A male sterile<!-- [et_pb_line_break_holder] --> onion. Proc. Amer. Soc. Hort. Sci. 34: 582-585.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 96. Jones H., Clarke A. (1943) Inheritance of male<!-- [et_pb_line_break_holder] --> sterility in the onion and the production of<!-- [et_pb_line_break_holder] --> hybrid seed. Proc. Am. Soc. Hort. Sci. 43: 189-19.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 97. Joseph, B., Corwin, J.A., Li, B., Atwell, S.,<!-- [et_pb_line_break_holder] --> Kliebenstein, D.J. (2013) Cytoplasmic<!-- [et_pb_line_break_holder] --> genetic variation and extensive cytonuclear<!-- [et_pb_line_break_holder] --> interactions influence natural variation in<!-- [et_pb_line_break_holder] --> the metabolome. eLife 2: e00776.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 98. Jovanović S.V., Todorović G., Grčić N., Štrbanović<!-- [et_pb_line_break_holder] --> R., Stanisavljević R., Brkić J., Krizmanić G.<!-- [et_pb_line_break_holder] --> (2017) Effects of different types of cytoplasm<!-- [et_pb_line_break_holder] --> on the kernel row number of maize inbred<!-- [et_pb_line_break_holder] --> lines. AGROFOR Int. J. 2: 155-161.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 99. Kaminski P., Podwyszynska M., Starzycki M.,<!-- [et_pb_line_break_holder] --> Starzycka-Korbas E. (2016) Interspecific<!-- [et_pb_line_break_holder] --> hybridization of cytoplasmic male-sterile<!-- [et_pb_line_break_holder] --> rapeseed with Ogura cytoplasm and <em>Brassica</em><!-- [et_pb_line_break_holder] --> <em>rapa </em>var. <em>pekinensis </em>as a method to obtain<!-- [et_pb_line_break_holder] --> male-sterile Chinese cabbage inbred lines.<!-- [et_pb_line_break_holder] --> Euphytica 208: 519-534.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 100. Kante M., Rattunde H.F.W., Nébié B., Weltzi<!-- [et_pb_line_break_holder] --> E., Haussmann B.I.G., Leiser W.L. (2018)<!-- [et_pb_line_break_holder] --> QTL mapping and validation of fertility<!-- [et_pb_line_break_holder] --> restoration in West African sorghum A1<!-- [et_pb_line_break_holder] --> cytoplasm and identification of a potential<!-- [et_pb_line_break_holder] --> causative mutation for <em>Rf2</em>. Theor. Appl.<!-- [et_pb_line_break_holder] --> Genet.131: 2397-241.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 101. Karyawati A.S., Sitompul S. M., Basuki N.,<!-- [et_pb_line_break_holder] --> Sitawati (2015) Combining ability analysis<!-- [et_pb_line_break_holder] --> for physiological characters of soybean<!-- [et_pb_line_break_holder] --> (<em>Glycine max </em>L. Merrill).Int. J. Plant Res. 5:<!-- [et_pb_line_break_holder] --> 113-121.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 102. Kersten B., Faivre Rampant P., Mader M., Le<!-- [et_pb_line_break_holder] --> Paslier M-C., Bounon R., Berard A., Vettori<!-- [et_pb_line_break_holder] --> C., Schroeder H., Leplé J-C., Fladung M<!-- [et_pb_line_break_holder] --> (2016) Genome sequences of <em>Populus tremula</em><!-- [et_pb_line_break_holder] --> chloroplast and mitochondrion: implications<!-- [et_pb_line_break_holder] --> for holistic poplar breeding. PLoSONE11:<!-- [et_pb_line_break_holder] --> e0147209.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 103. Khan S.A., Khan N.U., Mohammad F., Ahmad<!-- [et_pb_line_break_holder] --> M., Khan I.A., Bibi Z., Khan I.U. (2011)<!-- [et_pb_line_break_holder] --> Combining ability analysis in intraspecific F1<!-- [et_pb_line_break_holder] --> diallel cross of upland cotton. Pak. J. Bot. 43:<!-- [et_pb_line_break_holder] --> 1719-1723.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 104. Kihara H (1959) Fertility and morphological<!-- [et_pb_line_break_holder] --> variation in the substitution backcrosses of<!-- [et_pb_line_break_holder] --> the hybrid <em>Triticum vulgare </em>x <em>Aegilops caudata</em><!-- [et_pb_line_break_holder] --> . Proc. X Int. Congr. Genet. 1:.142–171.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 105. Kim B., Kim K., Yang T., Kim S. (2016)<!-- [et_pb_line_break_holder] --> Completion of the mitochondrial genome<!-- [et_pb_line_break_holder] --> sequence of onion (<em>Allium cepa </em>L.) containing<!-- [et_pb_line_break_holder] --> the CMS-S male-sterile cytoplasm and<!-- [et_pb_line_break_holder] --> identification of an independent event of the<!-- [et_pb_line_break_holder] --> <em>ccmFN </em>gene split. Curr. Genet. 62: 873-885.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 106. Kim B., Yang T.J., Kim S. (2019) Identification<!-- [et_pb_line_break_holder] --> of a gene responsible for cytoplasmic malesterility<!-- [et_pb_line_break_holder] --> in onions (<em>Allium cepa </em>L.) using<!-- [et_pb_line_break_holder] --> comparative analysis of mitochondrial<!-- [et_pb_line_break_holder] --> genome sequences of two recently diverged<!-- [et_pb_line_break_holder] --> cytoplasms. Theor. Appl. Genet. 132: 313-<!-- [et_pb_line_break_holder] --> 322.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 107. Kleine T., Leister D. (2016) Retrograde<!-- [et_pb_line_break_holder] --> signaling: organelles go networking.<!-- [et_pb_line_break_holder] --> Biochim. Biophys.Acta 1857: 1313-1325.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 108. Kohzuma K., Sato Y., Ito H., Okuzaki A.,<!-- [et_pb_line_break_holder] --> Watanabe M., Kobayashi H., Nakano M.,<!-- [et_pb_line_break_holder] --> Yamatani H., Masuda Y., Nagashima Y.,<!-- [et_pb_line_break_holder] --> Fukuoka H., Yamada T., Kanazawa A.,<!-- [et_pb_line_break_holder] --> Kitamura K., Tabei Y., Ikeuchi M., Sakamoto<!-- [et_pb_line_break_holder] --> W., Tanaka A., Kusaba M. (2017) The non-<!-- [et_pb_line_break_holder] --> Mendelian green cotyledon gene in soybean<!-- [et_pb_line_break_holder] --> encodes a small subunit of photosystem II.<!-- [et_pb_line_break_holder] --> Plant Physiol. 173: 2138-2147.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 109. Kollipara K.P., Saab I.N., Wych R.D., Lauer M.J.,<!-- [et_pb_line_break_holder] --> Singletary G.W. (2002) Expression profiling<!-- [et_pb_line_break_holder] --> of reciprocal maize hybrids divergent for<!-- [et_pb_line_break_holder] --> cold germination and desiccation tolerance.<!-- [et_pb_line_break_holder] --> Plant Physiol. 129: 974-992.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 110. Kozhemyakin V.V., Elkonin L.A., Dahlberg<!-- [et_pb_line_break_holder] --> J.A. (2017) Effect of drought stress on male<!-- [et_pb_line_break_holder] --> fertility restoration in A3 CMS-inducing<!-- [et_pb_line_break_holder] --> cytoplasm of sorghum. Crop J. 5: 282-289.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 111. Kumar A.A., Reddy B.V.S., Sharma H.C., Hash<!-- [et_pb_line_break_holder] --> C.T., Rao P.S., Ramaiah B., Reddy P.S.<!-- [et_pb_line_break_holder] --> (2011) Recent advances in sorghum genetic<!-- [et_pb_line_break_holder] --> enhancement research at ICRISAT. Am. J.<!-- [et_pb_line_break_holder] --> Plant Sci. 2: 589-600.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 112. Kumar V., Apte U.B., Bhagwat S.G., Jadhav B.B.,<!-- [et_pb_line_break_holder] --> Sawant D.S., Das B.K. (2013) Phenotypic and<!-- [et_pb_line_break_holder] --> molecular characterization of diversified<!-- [et_pb_line_break_holder] --> cytoplasmic male sterile lines of rice (<em>Oryza</em><!-- [et_pb_line_break_holder] --> <em>sativa </em>L.). Electron. J. Plant Breed. 4: 1193-1200.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 113. Kumar R.A., Oldenburg D.J., Bendich A.J. (2015)<!-- [et_pb_line_break_holder] --> Molecular integrity of chloroplast DNA and<!-- [et_pb_line_break_holder] --> mitochondrial DNA in mesophyll and bundle<!-- [et_pb_line_break_holder] --> sheath cells of maize. Planta 241: 1221-1230.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 114. Leclercq P. (1969) Cytoplasmic male sterility in<!-- [et_pb_line_break_holder] --> sunflower. Ann. Amelior. Plant 19: 99-106.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 115. Leite D.L., Galmarini C.R., Havey M.J. (1999)<!-- [et_pb_line_break_holder] --> Cytoplasms of elite open-pollinated<!-- [et_pb_line_break_holder] --> onions from Argentina and Brazil. Allium<!-- [et_pb_line_break_holder] --> Improvement Newsletter 9: 1-4.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 116. Li C., Zhao Z., Liu Y., Liang B., Guan S., Lan H.,<!-- [et_pb_line_break_holder] --> Wang J., Lu Y., Cao M. (2017) Comparative<!-- [et_pb_line_break_holder] --> transcriptome analysis of isonuclearalloplasmic<!-- [et_pb_line_break_holder] --> lines unmask key transcription<!-- [et_pb_line_break_holder] --> factor genes and metabolic pathways<!-- [et_pb_line_break_holder] --> involved in sterility of maize CMS-C. PeerJ.<!-- [et_pb_line_break_holder] --> 5: e3408.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 117. Liberatore K.L., Dukowic-Schultze S., Miller<!-- [et_pb_line_break_holder] --> M.E., Chen C., Kianian S.F. (2016) The role<!-- [et_pb_line_break_holder] --> of mitochondria in plant development and<!-- [et_pb_line_break_holder] --> stress tolerance. Free Radic. Biol. Med. 100:<!-- [et_pb_line_break_holder] --> 238-256.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 118. Lilly J.W., Bartoszewski G., Malepszy S., Havey<!-- [et_pb_line_break_holder] --> M.J. (2001) A major deletion in the cucumber<!-- [et_pb_line_break_holder] --> mitochondrial genome sorts with the MSC<!-- [et_pb_line_break_holder] --> phenotype. Curr. Genet. 40: 144-151.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 119. Linke B., Nothnagel T., Börner T. (1999)<!-- [et_pb_line_break_holder] --> Morphological characterization of<!-- [et_pb_line_break_holder] --> modified flower morphology of three novel<!-- [et_pb_line_break_holder] --> alloplasmic male sterile carrot sources. Plant<!-- [et_pb_line_break_holder] --> Breed. 118: 543-548.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 120. Linke B., Alessandro M.S., Galmarini<!-- [et_pb_line_break_holder] --> C.R., Nothnagel T. (2019) Carrot floral<!-- [et_pb_line_break_holder] --> development and reproductive biology. In<!-- [et_pb_line_break_holder] --> Simon P. <em>et al</em>. (Eds.) <em>The Carrot Genomes</em>.<!-- [et_pb_line_break_holder] --> Compendium of Plant Genomes. Springer<!-- [et_pb_line_break_holder] --> Nature, Switzerland, pp. 27-57.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 121. Lössl A., Götz M., Braun A., Wenzel G. (2000)<!-- [et_pb_line_break_holder] --> Molecular markers for cytoplasm in potato:<!-- [et_pb_line_break_holder] --> male sterility andcontribution of different<!-- [et_pb_line_break_holder] --> plastid-mitochondrial configurations to<!-- [et_pb_line_break_holder] --> starch production. Euphytica 116: 221-230.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 122. Machida L., Derera J., Tongoona P., MacRobert<!-- [et_pb_line_break_holder] --> J. (2010) Combining ability and reciprocal<!-- [et_pb_line_break_holder] --> cross effects of elite quality protein maize<!-- [et_pb_line_break_holder] --> inbred lines in subtropical environments.<!-- [et_pb_line_break_holder] --> Crop Sci. 50: 1708-1717.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 123. Mackenzie S. A. (2010). The influence of<!-- [et_pb_line_break_holder] --> mitochondrial genetics on crop breeding<!-- [et_pb_line_break_holder] --> strategies. In: Janick J. (Ed.) Plant Breeding<!-- [et_pb_line_break_holder] --> Reviews. John Wiley and Sons, New Jersey,<!-- [et_pb_line_break_holder] --> pp. 115-138.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 124. Makarenko M.S., Usatov A.V., Tatarinova T.V.,<!-- [et_pb_line_break_holder] --> Azarin K.V., Logacheva M.D., Gavrilova<!-- [et_pb_line_break_holder] --> V.A., Horn R. (2019) Characterization of the<!-- [et_pb_line_break_holder] --> mitochondrial genome of the MAX1 type of<!-- [et_pb_line_break_holder] --> cytoplasmic male-sterile sunflower. BMC<!-- [et_pb_line_break_holder] --> Plant Biol. 19 (Suppl 1): 51.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 125. Malepszy S., Burza W., Smiech M. (1996)<!-- [et_pb_line_break_holder] --> Characterization of a cucumber (<em>Cucumis</em><!-- [et_pb_line_break_holder] --> <em>sativus </em>L.) somaclonal variant with paternal<!-- [et_pb_line_break_holder] --> inheritance. J. Appl. Genet. 37: 65-78.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 126. McKay J.K., Richards J.H., Nemali K.S., Sen S.,<!-- [et_pb_line_break_holder] --> Mitchell-Olds T., Boles S., Stahl E.A.,Wayne<!-- [et_pb_line_break_holder] --> T., Juenge T.E. (2008) Genetics of drought<!-- [et_pb_line_break_holder] --> adaptation in <em>Arabidopsis thaliana </em>II. QTL<!-- [et_pb_line_break_holder] --> analysis of a new mapping population Kas-1<!-- [et_pb_line_break_holder] --> x Tsu-1. Evolution 62:3014-26.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 127. Miclaus M., Balacescu O., Has I., Balacescu L.,<!-- [et_pb_line_break_holder] --> Has V., Suteu D., Neuenschwander S., Keller<!-- [et_pb_line_break_holder] --> I., Bruggmann R. (2016) Maize cytolines<!-- [et_pb_line_break_holder] --> unmask key nuclear genes that are under the<!-- [et_pb_line_break_holder] --> control of retrograde signaling pathways in<!-- [et_pb_line_break_holder] --> plants. Genome Biol. Evol. 8: 3256-3270.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 128. Mihovilovich E., Sanetomo R., Hosaka K.,<!-- [et_pb_line_break_holder] --> Ordoñez B., Aponte M., Bonierbale M. (2015)<!-- [et_pb_line_break_holder] --> Cytoplasmic diversity in potato breeding:<!-- [et_pb_line_break_holder] --> case study from the International Potato<!-- [et_pb_line_break_holder] --> Center. Mol. Breed. 35: 137.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">129. Mohammed R., Are A.K., Munghate R.S.,<!-- [et_pb_line_break_holder] --> Bhavanasi R., Polavarapu K.K.B., Sharma H.C.<!-- [et_pb_line_break_holder] --> (2016) Inheritance of resistance to sorghum<!-- [et_pb_line_break_holder] --> shoot fly <em>Atherigona soccata </em>in sorghum,<!-- [et_pb_line_break_holder] --> <em>Sorghum bicolor </em>(L.) Moench. Front. Plant<!-- [et_pb_line_break_holder] --> Sci. 7: 543.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 130. Morley S.A., Nielsen B.L (2017) Plant mitochondrial<!-- [et_pb_line_break_holder] --> DNA. Front Biosci 22: 1023-1032.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 131. Mróz T.L., Eves-van den Akker S., Bernat A.,<!-- [et_pb_line_break_holder] --> Skarzyńska A., Pryszcz L., Olberg M., Havey<!-- [et_pb_line_break_holder] --> M.J., Bartoszewski G. (2018) Transcriptome<!-- [et_pb_line_break_holder] --> analyses of mosaic (MSC) mitochondrial<!-- [et_pb_line_break_holder] --> mutants of cucumber in a highly inbred<!-- [et_pb_line_break_holder] --> nuclear background. G3 8: 953-965.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">132. Nie Z., Zhao T., Yang S., Gai J. (2017)<!-- [et_pb_line_break_holder] -->Development of a cytoplasmic male-sterile<!-- [et_pb_line_break_holder] -->line NJCMS4A for hybrid soybean production.<!-- [et_pb_line_break_holder] -->Plant Breed. 136: 516-525.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 133. Nothnagel T., Straka P., Linke B. ( 2000) Male<!-- [et_pb_line_break_holder] --> sterility in populations of <em>Daucus </em>and the<!-- [et_pb_line_break_holder] --> development of alloplasmic male-sterile<!-- [et_pb_line_break_holder] --> carrot lines. Plant Breed. 119: 145-152.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 134. Oldenburg D.J., Bendich A.J. (2015) DNA<!-- [et_pb_line_break_holder] --> maintenance in plastids and mitochondria of<!-- [et_pb_line_break_holder] --> plants. Front. Plant Sci. 6: 883.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 135. Parkash C., Dey S.S., Bhatia R., Dhiman M.R.<!-- [et_pb_line_break_holder] --> (2015) Indigenously developed SI and CMS<!-- [et_pb_line_break_holder] --> lines in hybrid breeding of cabbage. Indian J.<!-- [et_pb_line_break_holder] --> Hortic. 72: 212-217.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 136. Pawełkowicz M., Zieliński K., Zielińska D.,<!-- [et_pb_line_break_holder] --> Pląder W., Yagi K., Wojcieszek M., Siedlecka<!-- [et_pb_line_break_holder] --> E., Bartoszewski G., Skarzyńska A., Przybecki<!-- [et_pb_line_break_holder] --> Z. (2016) Next generation sequencing and<!-- [et_pb_line_break_holder] --> omics in cucumber (<em>Cucumis </em>sativus L.)<!-- [et_pb_line_break_holder] --> breeding directed research. Plant Sci. 242:<!-- [et_pb_line_break_holder] --> 77-88.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 137. Pelletier G., Budar F. (2015) Brassica Ogu-<!-- [et_pb_line_break_holder] --> INRA cytoplasmic male sterility: an<!-- [et_pb_line_break_holder] --> example of successful plant somatic fusion<!-- [et_pb_line_break_holder] --> for hybrid seed production. In: Li X-Q.,<!-- [et_pb_line_break_holder] --> Donnelly D.J., Jensen T.G. (Eds.) Somatic<!-- [et_pb_line_break_holder] --> Genome Manipulation. Springer, New York,<!-- [et_pb_line_break_holder] --> Heidelberg, Dordrecht, London, pp. 199-216.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 138. Peterson C.E., Simon P.W. (1986) Carrot<!-- [et_pb_line_break_holder] --> breeding. In: Bassett M.J. (Ed.) Breeding<!-- [et_pb_line_break_holder] --> vegetable crops, AVI, Westport, pp. 321-356.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 139. Rao R.S.P., Salvato F., Thalc B., Eubelc H.,<!-- [et_pb_line_break_holder] --> Thelend J.J., Møller I.M. (2017) The proteome<!-- [et_pb_line_break_holder] --> of higher plant mitochondria. Mitochondrion<!-- [et_pb_line_break_holder] --> 33: 22-37.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 140. Reddermann A., Horn R. (2018) Recombination<!-- [et_pb_line_break_holder] --> events involving the <em>atp9 </em>gene are associated<!-- [et_pb_line_break_holder] --> with male sterility of CMS PET2 in Sunflower.<!-- [et_pb_line_break_holder] --> Int. J. Mol. Sci. 19: 806.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 141. Reddy B.V.S., Ramesh S., Reddy S.P., Ramaiah<!-- [et_pb_line_break_holder] --> B. (2007) Combining ability and heterosis<!-- [et_pb_line_break_holder] --> as influenced by male-sterility inducing<!-- [et_pb_line_break_holder] --> cytoplasms in sorghum [<em>Sorghum bicolor </em>(L.)<!-- [et_pb_line_break_holder] --> Moench]. Euphytica 154: 153-164.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 142. Reddy S.P., Rao M.D., Reddy B.V.S., Are A.K.,<!-- [et_pb_line_break_holder] --> Thakur R.P., Rao V.P. (2011) Evaluation of A1,<!-- [et_pb_line_break_holder] --> A2, A3, A4(M), A4 (G), A4 (VZM) cytoplasm<!-- [et_pb_line_break_holder] --> in isonuclear backgrounds for grain mold<!-- [et_pb_line_break_holder] --> resistance. Crop Prot. 30: 658-662.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 143. Rolland N., Bouchnak I., Moyet L., Salvi D.,<!-- [et_pb_line_break_holder] --> Kuntz M. (2018) The main functions of<!-- [et_pb_line_break_holder] --> plastids. In: Maréchal E. (Ed.) Plastids.<!-- [et_pb_line_break_holder] --> Methods in Molecular Biology, Humana<!-- [et_pb_line_break_holder] --> Press, New York, pp. 73-85.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 144. Roux F., Mary-Huard T., Barillot E., Wenes E.,<!-- [et_pb_line_break_holder] --> Botran L., Durand S., Villoutreix R., Martin-<!-- [et_pb_line_break_holder] --> Magniette M.L., Camilleri C., Budar F. (2016)<!-- [et_pb_line_break_holder] --> Cytonuclear interactions affect adaptive<!-- [et_pb_line_break_holder] --> traits of the annual plant <em>Arabidopsis thaliana</em><!-- [et_pb_line_break_holder] --> in the field. Proc. Natl. Acad. Sci. U.S.A.<!-- [et_pb_line_break_holder] --> 113:3687-3692.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 145. Sabar M., Gagliardi D., Balk J., Leaver C.J. (2003)<!-- [et_pb_line_break_holder] --> ORFB is a subunit of F1FO-ATP synthase:<!-- [et_pb_line_break_holder] --> insight into the basis of cytoplasmic male<!-- [et_pb_line_break_holder] --> sterility in sunflower. EMBO Rep. 4: 381-386.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 146. Sanetomo R., Gebhardt C. (2015) Cytoplasmic<!-- [et_pb_line_break_holder] --> genome types of European potatoes and<!-- [et_pb_line_break_holder] --> their effects on complex agronomic traits.<!-- [et_pb_line_break_holder] --> BMC Plant Biol. 15: 162.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 147. Sanetomo R., Hosaka K. (2011) Reciprocal<!-- [et_pb_line_break_holder] --> differences in DNA sequence and methylation<!-- [et_pb_line_break_holder] --> status of the pollen DNA between F1 hybrids<!-- [et_pb_line_break_holder] --> of <em>Solanum tuberosum </em>x <em>S. demissum</em>.<!-- [et_pb_line_break_holder] --> Euphytica 182: 219-229.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 148. Sanetomo R., Ono S., Hosaka K. (2011)<!-- [et_pb_line_break_holder] --> Characterization of crossability in the<!-- [et_pb_line_break_holder] --> crosses between <em>Solanum demissum </em>and <em>S.</em><!-- [et_pb_line_break_holder] --> <em>tuberosum</em>, and the F1 and BC1 progenies. Am.<!-- [et_pb_line_break_holder] --> J. Pot. Res. 88: 500-510.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 149. Sanetomo R., Hosaka K. (2013) A recombinationderived<!-- [et_pb_line_break_holder] --> mitochondrial genome retained<!-- [et_pb_line_break_holder] --> stoichiometrically only among <em>Solanum</em><!-- [et_pb_line_break_holder] --> <em>verrucosum </em>Schltdl. and Mexican polyploid<!-- [et_pb_line_break_holder] --> wild potato species. Genet. Resour. Crop Evol.<!-- [et_pb_line_break_holder] --> 60: 2391-2404.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 150. Santos J.F., Dirk L.M.A., Downie A.B., Sanches<!-- [et_pb_line_break_holder] --> M.F.G., Vieira R.D. (2017) Reciprocal effect of<!-- [et_pb_line_break_holder] --> parental lines on the physiological potential<!-- [et_pb_line_break_holder] --> and seed composition of corn hybrid seeds.<!-- [et_pb_line_break_holder] --> Seed Sci. Res. 27: 206-216.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 151. Satyavathi V.V., Manga V., Rao M.V., Chittibabu<!-- [et_pb_line_break_holder] --> M. (2016) Genetic analysis of reciprocal<!-- [et_pb_line_break_holder] --> differences in the inheritance of <em>in vitro</em><!-- [et_pb_line_break_holder] --> characters in pearl millet. Genet. Mol. Biol.<!-- [et_pb_line_break_holder] --> 39: 54-61.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 152. Schönhals E.M., Ortega F., Barandalla L.,<!-- [et_pb_line_break_holder] --> Aragones A., Ruiz de Galarreta J.I., Liao J.-C.,<!-- [et_pb_line_break_holder] --> Sanetomo R., Walkemeier B., Tacke E., Ritter<!-- [et_pb_line_break_holder] --> E., Gebhardt C. (2016) Identification and<!-- [et_pb_line_break_holder] --> reproducibility of diagnostic DNA markers<!-- [et_pb_line_break_holder] --> for tuber starch and yield optimization in<!-- [et_pb_line_break_holder] --> a novel association mapping population of<!-- [et_pb_line_break_holder] --> potato (<em>Solanum tuberosum </em>L.). Theor. Appl.<!-- [et_pb_line_break_holder] --> Genet.129: 767-785.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 153. Schweisguth B. (1973) Étude d’un nouveau type<!-- [et_pb_line_break_holder] --> de stérilité mâle chez l’oignon, <em>Allium cepa </em>L.<!-- [et_pb_line_break_holder] --> Ann. Amélior. Plant. 23: 221-233.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 154. Sekhon B.S., Singh Y., Sharma S., Sharma<!-- [et_pb_line_break_holder] --> S., Verma A., Vishalakshi, Singh H. (2018)<!-- [et_pb_line_break_holder] --> Cytoplasmic male sterility (CMS) in<!-- [et_pb_line_break_holder] --> cauliflower breeding: are view. Adv. Res. 15:<!-- [et_pb_line_break_holder] --> 1-8.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 155. Serieys H., Christov M. Identification, study<!-- [et_pb_line_break_holder] --> and utilization in breeding programs of<!-- [et_pb_line_break_holder] --> new CMS sources (1999 - 2004). Proc. FAO<!-- [et_pb_line_break_holder] --> Consultation Meeting, 17-20 July 2004, Novi<!-- [et_pb_line_break_holder] --> Sad, Serbia, pp. 1-63.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 156. Sharma H.C., Dhillon M.K., Reddy B.V.S. (2006)<!-- [et_pb_line_break_holder] --> Expression of resistance to <em>Atherigona</em><!-- [et_pb_line_break_holder] --> <em>soccata </em>in F1 hybrids involving shoot fly<!-- [et_pb_line_break_holder] --> resistant and susceptible cytoplasmic malesterile<!-- [et_pb_line_break_holder] --> and restorer lines of sorghum. Plant<!-- [et_pb_line_break_holder] --> Breed. 125: 473-477.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 157. Shaukat S., Khan T.M., Shakee L. A., Ijaz S.<!-- [et_pb_line_break_holder] --> (2013) Estimation of best parents and<!-- [et_pb_line_break_holder] --> superior cross combinations for yield and<!-- [et_pb_line_break_holder] --> fiber quality related traits in upland cotton<!-- [et_pb_line_break_holder] --> (<em>Gossypium hirsutum </em>L.). Sci. Tech. Dev. 32:<!-- [et_pb_line_break_holder] --> 281-284.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 158. Shen J., Dirks R., Havey M.J. (2015) Diallel<!-- [et_pb_line_break_holder] --> crossing among doubled haploids of<!-- [et_pb_line_break_holder] --> cucumber reveals significant reciprocalcross<!-- [et_pb_line_break_holder] --> differences. J. Amer. Soc. Hort. Sci.<!-- [et_pb_line_break_holder] --> 140:178-182.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 159. Singh S., Bhatia R., Kumar R., Sharma K., Dash<!-- [et_pb_line_break_holder] --> S., Dey S.S. (2018) Cytoplasmic male sterile<!-- [et_pb_line_break_holder] --> and doubled haploid lines with desirable<!-- [et_pb_line_break_holder] --> combining ability enhances the concentration<!-- [et_pb_line_break_holder] --> of important antioxidant attributes in <em>Brassica</em><!-- [et_pb_line_break_holder] --> <em>oleracea</em>. Euphytica 214: 207.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 160. Smith D. R., Keeling P. J. (2015). Mitochondrial<!-- [et_pb_line_break_holder] --> and plastid genome architecture:<!-- [et_pb_line_break_holder] --> Reoccurring themes, but significant<!-- [et_pb_line_break_holder] --> differences at the extremes. Proc. Natl. Acad.<!-- [et_pb_line_break_holder] --> Sci. U.S.A., 112: 10177-10184.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 161. Soltani A., Kumar A., Mergoum M., Pirseyedi<!-- [et_pb_line_break_holder] --> S.M., Hegstad J.B., Mazaheri M., Kianian<!-- [et_pb_line_break_holder] --> S.F. (2016) Novel nuclear-cytoplasmic<!-- [et_pb_line_break_holder] --> interaction in wheat (<em>Triticum aestivum</em>)<!-- [et_pb_line_break_holder] --> induces vigorous plants. Funct. Integr.<!-- [et_pb_line_break_holder] --> Genomics16: 171-182.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 162. Su A., Song W., Xing J., Zhao Y., Zhang R.,<!-- [et_pb_line_break_holder] --> Li C., Duan M., Luo M., Shi Z., Zhao J.<!-- [et_pb_line_break_holder] --> (2016) Identification of genes potentially<!-- [et_pb_line_break_holder] --> associated with the fertility instability of<!-- [et_pb_line_break_holder] --> S-type cytoplasmic male sterility in maize<!-- [et_pb_line_break_holder] --> via bulked segregant RNA-Seq. PLoS ONE 11:<!-- [et_pb_line_break_holder] --> e0163489.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 163. Szała L., Cegielska-Taras T., Adamska E.,<!-- [et_pb_line_break_holder] --> Kaczmarek Z. (2018) Assessment of genetic<!-- [et_pb_line_break_holder] --> effects on important breeding traits in<!-- [et_pb_line_break_holder] --> reciprocal DH populations of winter oilseed<!-- [et_pb_line_break_holder] --> rape (<em>Brassica napus </em>L.). J. Integr. Agr. 17:76-85.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 164. Takenaka S., Yamamoto R., Nakamura C. (2018)<!-- [et_pb_line_break_holder] --> Genetic diversity of submergence stress<!-- [et_pb_line_break_holder] --> response in cytoplasms of the <em>Triticum</em> <!-- [et_pb_line_break_holder] --> <em>Aegilops </em>complex. Sci. Rep: 1-13.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 165. Talukder S.K., Prasad P.V., Todd T., Babar M.A.,<!-- [et_pb_line_break_holder] --> Poland J., Bowden R., Fritz A. (2014) Effect of<!-- [et_pb_line_break_holder] --> cytoplasmic diversity on post anthesis heat<!-- [et_pb_line_break_holder] --> tolerance in wheat. Euphytica, 204: 383-394.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 166. Tang H., Xie Y., Liu Y-G-., Chen L. (2017)<!-- [et_pb_line_break_holder] --> Advances in understanding the molecular<!-- [et_pb_line_break_holder] --> mechanisms of cytoplasmic male sterility<!-- [et_pb_line_break_holder] --> and restoration in rice. Plant Reprod. 30:<!-- [et_pb_line_break_holder] --> 179-184.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 167. Tang Z., Yang Z., Hu Z., Zhang D., Lu X., Jia B.,<!-- [et_pb_line_break_holder] --> Deng D., Xu C. (2013) Cytonuclear epistatic<!-- [et_pb_line_break_holder] --> quantitative trait locus mapping for plant<!-- [et_pb_line_break_holder] --> height and ear height in maize. Mol. Breed.<!-- [et_pb_line_break_holder] --> 31: 1-14.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 168. Tang Z., Hu W., Huang J., Lu X., Yang Z., Lei S.,<!-- [et_pb_line_break_holder] --> Zhang Y., Xu C. (2014) Potential involvement<!-- [et_pb_line_break_holder] --> of maternal cytoplasm in the regulation of<!-- [et_pb_line_break_holder] --> flowering time via interaction with nuclear<!-- [et_pb_line_break_holder] --> genes in maize. Crop Sci. 54: 544-553.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 169. Tao D., Hu F., Yang J., Yang G., Yang Y., Xu<!-- [et_pb_line_break_holder] --> P., Li J., Ye C., Dai L. (2004) Cytoplasm and<!-- [et_pb_line_break_holder] --> cytoplasm-nucleus interactions affect<!-- [et_pb_line_break_holder] --> agronomic traits in japonica rice. Euphytica<!-- [et_pb_line_break_holder] --> 135: 129-134.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 170. Tao D., Xu P., Zhou J., Deng X., Li J., Deng W.,<!-- [et_pb_line_break_holder] --> Yang J., Yang G., Li Q., Hu F. (2011) Cytoplasm<!-- [et_pb_line_break_holder] --> affects grain weight and filled-grain ratio in<!-- [et_pb_line_break_holder] --> indica rice. BMC Genet. 12: 53.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 171. Terao H. (1918) Maternal inheritance in the<!-- [et_pb_line_break_holder] --> soybean. Am. Nat. 52: 51-56.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 172. Thompson D.J. (1961) Studies on the inheritance<!-- [et_pb_line_break_holder] --> of male sterility in the carrot (<em>Daucus carota</em><!-- [et_pb_line_break_holder] --> <em>L. </em>var<em>. sativa</em>). Proc. Am. Soc. Hort. Sci. 78:<!-- [et_pb_line_break_holder] --> 332-338.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 173. Tiwari J.K., Devi S., Ali N., Luthra S.K., Kumar<!-- [et_pb_line_break_holder] --> V., Bhardwaj V., Singh R.K., Rawat S. K.,<!-- [et_pb_line_break_holder] --> Chakrabarti S.K. (2018) Progress in somatic<!-- [et_pb_line_break_holder] --> hybridization research in potato during the<!-- [et_pb_line_break_holder] --> past 40 years. Plant Cell Tissue Organ Cult.<!-- [et_pb_line_break_holder] --> 132: 225-238.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 174. Toriyama K., Kazama T. (2016) Development of<!-- [et_pb_line_break_holder] --> cytoplasmic male sterileIR24 and IR64 using<!-- [et_pb_line_break_holder] --> CW-CMS/Rf17 system. Rice 9: 22.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 175. Tsunewaki T. (2009) Plasmon analysis in the<!-- [et_pb_line_break_holder] --> <em>Triticum-Aegilops </em>complex. Breed. Sci. 59:<!-- [et_pb_line_break_holder] --> 455-470.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 176. Turner S.D., Maurizio P.L., Valdar W., Yandell<!-- [et_pb_line_break_holder] --> B.S., Simon P.W. (2018) Dissecting the<!-- [et_pb_line_break_holder] --> genetic architecture of shoot growth in<!-- [et_pb_line_break_holder] --> carrot (<em>Daucus carota </em>L.) using a dialle mating<!-- [et_pb_line_break_holder] --> design. G3 8: 411-426.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 177. Tuteja O.P., Banga M. (2011) Effects of<!-- [et_pb_line_break_holder] --> cytoplasm on heterosis for agronomic traits<!-- [et_pb_line_break_holder] --> in upland cotton (G<em>ossypium hirsutum</em>).<!-- [et_pb_line_break_holder] --> Indian J. Agr. Sci. 81: 1001-1007.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 178. Tyagi V., Dhillon S.K., Bajaj R.K., Gupta S.<!-- [et_pb_line_break_holder] --> (2015a) Phenotyping and genetic evaluation<!-- [et_pb_line_break_holder] --> of sterile cytoplasmic male sterile analogues<!-- [et_pb_line_break_holder] --> in sunflower (<em>Helianthus annuus </em>L.).<!-- [et_pb_line_break_holder] --> Bangladesh J. Bot. 44: 23-30.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 179. Tyagi V., Dhillon S.K., Gill B.S. (2015b)<!-- [et_pb_line_break_holder] --> Morphophysiological expression in cms<!-- [et_pb_line_break_holder] --> analogues of sunflower (<em>Helianthus annuus</em><!-- [et_pb_line_break_holder] --> L.) under water stress environment. Electron.<!-- [et_pb_line_break_holder] --> J. Plant Breed.6: 1150-1156.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 180. Tyagi V., Dhillon S.K. (2017) Effect of alien<!-- [et_pb_line_break_holder] --> cytoplasm on combining ability for earliness<!-- [et_pb_line_break_holder] --> and seed yield in sunflower under irrigation<!-- [et_pb_line_break_holder] --> and drought stress. HELIA 40: 71-84.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 181. Tyagi V., Dhillon S.K., Kaushik P. (2018)<!-- [et_pb_line_break_holder] --> Stability analysis of some novel cytoplasmic<!-- [et_pb_line_break_holder] --> male sterile sourcesof sunflower and their<!-- [et_pb_line_break_holder] --> hybrids. HELIA 41: 153-200.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 182. Vacek L.A., Rooney W.L. (2018) Effects of<!-- [et_pb_line_break_holder] --> cytoplasm, male and female parents on<!-- [et_pb_line_break_holder] --> biomass productivity in sorghum (<em>Sorghum</em><!-- [et_pb_line_break_holder] --> <em>bicolor </em>L. Moench). J. Crop Improv. 32: 635-<!-- [et_pb_line_break_holder] --> 647.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 183. Van Aken O., Pogson B. J. (2017) Convergence of<!-- [et_pb_line_break_holder] --> mitochondrial and chloroplastic ANAC017/<!-- [et_pb_line_break_holder] --> PAP-dependent retrograde signaling<!-- [et_pb_line_break_holder] --> pathways and suppression of programmed<!-- [et_pb_line_break_holder] --> cell death. Cell Death. Differ. 24: 955-960.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 184. Van Dingenen J., Blomme J., Gonzalez N., Inzé D.<!-- [et_pb_line_break_holder] --> (2016) Plants grow with a little help from their<!-- [et_pb_line_break_holder] --> organelle friends. J. Exp. Bot. 67: 6267-6281.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 185. Velasco L., Pérez-Vich B., Fernández-Martínez J.M.<!-- [et_pb_line_break_holder] --> (2007) Relationships between seed oil content<!-- [et_pb_line_break_holder] --> and fatty acid composition in high stearic acid<!-- [et_pb_line_break_holder] --> sunflower. Plant Breed. 126: 503-508.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 186. Vu H.Q., Yoshimatsu Y., Khrustaleva L.I.,<!-- [et_pb_line_break_holder] --> Yamauchi N., Shigyo M. (2012) Alien genes<!-- [et_pb_line_break_holder] --> introgression and development of alien<!-- [et_pb_line_break_holder] --> monosomic addition lines from a threatened<!-- [et_pb_line_break_holder] --> species, <em>Allium roylei </em>Stearn, to <em>Allium cepa </em>L.<!-- [et_pb_line_break_holder] --> Theor. Appl. Genet. 124: 1241-1257.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 187. Wang Y., Berkowitz O., Selinski J., Xu Y.,<!-- [et_pb_line_break_holder] --> Hartmann A., Whelan J (2018) Stress<!-- [et_pb_line_break_holder] --> responsive mitochondrial proteins in<!-- [et_pb_line_break_holder] --> <em>Arabidopsis thaliana</em>. Free Radic. Biol.Med.<!-- [et_pb_line_break_holder] --> 122: 28–39.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 188. Wang F., Feng C., O’Connell M.A., Stewart<!-- [et_pb_line_break_holder] --> J.McD., Zhang J. (2010) RFLP analysis of<!-- [et_pb_line_break_holder] --> mitochondrial DNA in two cytoplasmic male<!-- [et_pb_line_break_holder] --> sterility systems (CMS-D2 and CMS-D8) of<!-- [et_pb_line_break_holder] --> cotton. Euphytica 172: 93<em>.</em></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><!-- [et_pb_line_break_holder] --> 189. Waza S.A., Jaiswal H.K. (2015) Effects of WA<!-- [et_pb_line_break_holder] --> cytoplasm on various quality characteristics<!-- [et_pb_line_break_holder] --> of rice hybrids. J. Anim. Plant. Sci. 25: 1693-<!-- [et_pb_line_break_holder] --> 1698.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 190. Weider C., Stamp P., Christov N., Hüsken A.,<!-- [et_pb_line_break_holder] --> Foueillassar X., Camp K.H.,Munsch M.,<!-- [et_pb_line_break_holder] --> (2009) Stability of cytoplasmic male sterility<!-- [et_pb_line_break_holder] --> in maize under different environmental<!-- [et_pb_line_break_holder] --> conditions. Crop Sci. 49: 77-84.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 191. Welch J.E., Grimball E.L. (1947) Male sterility in<!-- [et_pb_line_break_holder] --> carrot. Science 106: 594.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 192. Welchen E., García L., Mansilla N., Gonzalez D.H.<!-- [et_pb_line_break_holder] --> (2013) Coordination of plant mitochondrial<!-- [et_pb_line_break_holder] --> biogenesis: keeping pace with cellular<!-- [et_pb_line_break_holder] --> requirements. Front. Plant Sci. 4: 551.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 193. Wise R.R. (2007) The diversity of plastid form<!-- [et_pb_line_break_holder] --> and function. In: Wise R.R., Hoober J.K. (Eds.)<!-- [et_pb_line_break_holder] --> The Structure and Function of Plastids.<!-- [et_pb_line_break_holder] --> Springer, Dordrecht, pp. 3-26.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 194. Wolyn D., Chahal A. (1998) Nuclear and<!-- [et_pb_line_break_holder] --> cytoplasmic interactions for petaloid malesterile<!-- [et_pb_line_break_holder] --> accessions of wild carrot (<em>Daucus</em><!-- [et_pb_line_break_holder] --> <em>carota </em>L.). J. Am. Soc. Hort. Sci. 123: 849-853.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 195. Wu J., McCarty J.C., Jenkins J.N. (2010) Cotton<!-- [et_pb_line_break_holder] --> chromosome substitution lines crossed with<!-- [et_pb_line_break_holder] --> cultivars: genetic model evaluation and seed<!-- [et_pb_line_break_holder] --> trait analyses. Theor. Appl. Genet. 120: 1473-<!-- [et_pb_line_break_holder] --> 1483.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 196. Wu J., Zhang M., Zhang B., Zhang X., Guo L.,<!-- [et_pb_line_break_holder] --> Qi T., Wang H., Zhang J., Xing C. (2017)<!-- [et_pb_line_break_holder] --> Genome-wide comparative transcriptome<!-- [et_pb_line_break_holder] --> analysis of CMS-D2 and its maintainer<!-- [et_pb_line_break_holder] --> and restorer lines in upland cotton. BMC<!-- [et_pb_line_break_holder] --> Genomics 18: 454.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 197. Xia G. (2009) Progress of chromosome<!-- [et_pb_line_break_holder] --> engineering mediated by asymmetric<!-- [et_pb_line_break_holder] --> somatic hybridization. J. Genet. Genomics<!-- [et_pb_line_break_holder] --> 36: 547-556.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 198. Xu J. (2005) The inheritance of organelle genes<!-- [et_pb_line_break_holder] --> and genomes: patterns and mechanisms.<!-- [et_pb_line_break_holder] --> Genome 48: 951-958.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 199. Xu P., Yan W., He J., Li Y., Zhang H., Peng H., Wu<!-- [et_pb_line_break_holder] --> X. (2013) DNA methylation affected by male<!-- [et_pb_line_break_holder] --> sterile cytoplasm in rice (<em>Oryza sativa </em>L.).<!-- [et_pb_line_break_holder] --> Mol. Breed. 31: 719-727.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 200. Xu Y., Li H.-N., Li G.-J., Wang X., Cheng L.-G.,<!-- [et_pb_line_break_holder] --> Zhang Y.-M. (2011) Mapping quantitative<!-- [et_pb_line_break_holder] --> trait loci for seed size traits in soybean<!-- [et_pb_line_break_holder] --> (<em>Glycine max </em>L. Merr.). Theor. Appl. Genet.<!-- [et_pb_line_break_holder] --> 122: 581-594.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 201. Yamagishi H., Bhat R.S. (2014) Cytoplasmic<!-- [et_pb_line_break_holder] --> male sterility in <em>Brassicaceae </em>crops. Review.<!-- [et_pb_line_break_holder] --> Breed. Sci. 64: 38-47.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 202. Yang L., Wu Y., Zhang M., Zhang J., Stewart<!-- [et_pb_line_break_holder] --> J.McD., Xing C., Wu J., Jin S. (2018)<!-- [et_pb_line_break_holder] --> Transcriptome, cytological and biochemical<!-- [et_pb_line_break_holder] --> analysis of cytoplasmic male sterility and<!-- [et_pb_line_break_holder] --> maintainer line in CMS-D8 cotton. Plant<!-- [et_pb_line_break_holder] --> Mol. Biol. 97: 537.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 203. Zhang J., Wang L., Zhao A., Liu H., Jan C.-<!-- [et_pb_line_break_holder] --> C., Qi D., Liu G. (2010) Morphological and<!-- [et_pb_line_break_holder] --> cytological study in a new type of cytoplasmic<!-- [et_pb_line_break_holder] --> male-sterile line CMSGIG2 in sunflower<!-- [et_pb_line_break_holder] --> (<em>Helianthus annuus</em>). Plant Breed. 129: 19-23.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 204. Zhang J., Abdelraheem A.,Stewart J. McD.<!-- [et_pb_line_break_holder] --> (2019) A comparative analysis of cytoplasmic<!-- [et_pb_line_break_holder] --> effects on lint yield and fiber quality between<!-- [et_pb_line_break_holder] --> CMS-D2 and CMS-D8 systems in upland<!-- [et_pb_line_break_holder] --> cotton. Crop Sci. 59: 624-631.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">205. Zhang X., Hirsch C.N., Sekhon R.S., de Leon N.,<!-- [et_pb_line_break_holder] --> Kaeppler S.M. (2016) Evidence for maternal<!-- [et_pb_line_break_holder] --> control of seed size in maize from phenotypic<!-- [et_pb_line_break_holder] --> and transcriptional analysis. J. Exp. Bot. 67:<!-- [et_pb_line_break_holder] --> 1907-1917.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 206. Zangi M. R., Jelodar N.B., Kazemitabar S.K.,<!-- [et_pb_line_break_holder] --> Vafaei-tabar M. (2010) Cytoplasmic<!-- [et_pb_line_break_holder] --> and combining ability effects on agromorphological<!-- [et_pb_line_break_holder] --> characters in intra and inter<!-- [et_pb_line_break_holder] --> crosses of Pima and upland cottons (G.<!-- [et_pb_line_break_holder] --> <em>hirsutum </em>and G. <em>barbadense</em>). Int. J. Biol. 2:<!-- [et_pb_line_break_holder] --> 94-102.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 207. Zhao T.J., Gai J.Y. (2006) Discovery of new malesterile<!-- [et_pb_line_break_holder] --> cytoplasm sources and development<!-- [et_pb_line_break_holder] --> of a new cytoplasmic-nuclear male-sterile<!-- [et_pb_line_break_holder] --> line NJCMS3A in soybean. Euphytica 152:<!-- [et_pb_line_break_holder] --> 387-396.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 208. Zhao Y., Luo L., Xu J., Xin P., Guo H., Wu J., Bai L.,<!-- [et_pb_line_break_holder] --> Wang G., Chu J., Zuo J., Yu H., Huang X., Li J.<!-- [et_pb_line_break_holder] --> (2018) Malate transported from chloroplast<!-- [et_pb_line_break_holder] --> to mitochondrion triggers production of ROS<!-- [et_pb_line_break_holder] --> and PCD in <em>Arabidopsis thaliana</em>. Cell Res. 28:<!-- [et_pb_line_break_holder] --> 448-461.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 209. Żmieńko A., Guzowska-Nowowiejska M.,<!-- [et_pb_line_break_holder] --> Urbaniak R., Pląder W., Formanowicz P.,<!-- [et_pb_line_break_holder] --> Figlerowicz M. (2011) A tiling microarray<!-- [et_pb_line_break_holder] --> for global analysis of chloroplast genome<!-- [et_pb_line_break_holder] --> expression in cucumber and other plants.<!-- [et_pb_line_break_holder] --> Plant Methods 7: 29.</font></p><!-- [et_pb_line_break_holder] --></body><!-- [et_pb_line_break_holder] --></html>