Vol. XXIX Issue 1
Article 2
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><!-- [et_pb_line_break_holder] --><html xmlns="http://www.w3.org/1999/xhtml"><!-- [et_pb_line_break_holder] --><head><!-- [et_pb_line_break_holder] --><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /><!-- [et_pb_line_break_holder] --><title>Untitled Document</title><!-- [et_pb_line_break_holder] --></head><!-- [et_pb_line_break_holder] --><!-- [et_pb_line_break_holder] --><body><!-- [et_pb_line_break_holder] --><p align="right"><font size="3" face="Arial, Helvetica, sans-serif"><strong>ARTÍCULOS ORIGINALES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="4" face="Arial, Helvetica, sans-serif"><strong>Clinical and cytogenetic characterization of a patient</strong> <!-- [et_pb_line_break_holder] --> <strong>with tetrasomy 18p</strong></font></p><!-- [et_pb_line_break_holder] --><p><i><font size="3" face="Arial, Helvetica, sans-serif"><strong>Caracterización clínica y citogenética de un paciente con</strong> <strong>tetrasomía 18p</strong></font></i></p><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">Vazquez Cantú D.L.<sup>1,2</sup>, Gutiérrez García V.M.<sup>2</sup>, Cruz-Camino H.<sup>1,4</sup>, Lara Díaz V.J.<sup>2</sup>, Garza García K.<sup>2</sup>, Garduño <!-- [et_pb_line_break_holder] --> Zarazúa L.M.<sup>3</sup>, Meléndez Hernández R.<sup>3</sup>, Paz Martínez A.<sup>3</sup>, Mayén Molina D.G.<sup>3</sup>, Cantú-Reyna C.<sup>1,2,*</sup></font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><sup>1</sup> Genomi-k S.A.P.I. de C.V., Monterrey, Nuevo León, México.<br /><!-- [et_pb_line_break_holder] --> <sup>2</sup> Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey, Nuevo León, México.<br /><!-- [et_pb_line_break_holder] --> <sup>3</sup> Hospital Ángeles Lomas, Unidad de Genética, Estado de México, México.<br /><!-- [et_pb_line_break_holder] --> <sup>4</sup> Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, Nuevo León, México.<br /><!-- [et_pb_line_break_holder] --> * Corresponding Author: <a href="mailto:cocantu@genomi-k.com">cocantu@genomi-k.com</a></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Fecha de recepción</b>: 24/10/2017<br /><!-- [et_pb_line_break_holder] --> <b>Fecha de aceptación de versión final</b>: 17/04/2018</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p><b><font size="2" face="Arial, Helvetica, sans-serif">RESUMEN</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> La tetrasomía 18p es una anormalidad cromosómica estructural con la presencia de un isocromosoma extra 18p, causado por una no disyunción<!-- [et_pb_line_break_holder] --> durante la meiosis materna II. Este adicional i(18p) ocurre en 1 de 180.000 niños nacidos vivos en todo el mundo, y afecta a hombres y mujeres<!-- [et_pb_line_break_holder] --> por igual. Se caracteriza por dismorfias craneofaciales; anomalías en oídos, nariz y garganta (ENT); alteraciones musculoesqueléticas y del desarrollo<!-- [et_pb_line_break_holder] --> global. Nuestro objetivo es presentar los hallazgos clínicos y citogenéticos de un varón latinoamericano de 3 años y 10 meses de edad con i(18p),<!-- [et_pb_line_break_holder] --> para explicar los efectos de dosificación génica, comparando sus características con las reportadas en la literatura. Este paciente es producto del<!-- [et_pb_line_break_holder] --> segundo embarazo de una mujer de 39 años y el primer hijo de un hombre de 49 años. Sus principales características clínicas fueron microcefalia,<!-- [et_pb_line_break_holder] --> dismorfia facial, hipotonía generalizada y retraso global en el desarrollo. Se requirió una muestra de sangre del paciente para realizar un cariotipo con<!-- [et_pb_line_break_holder] --> bandas GTG y una hibridación fluorescente in situ (FISH) para el análisis del brazo corto del cromosoma 18. Además, se llevó a cabo un análisis de<!-- [et_pb_line_break_holder] --> microarreglos para detectar desequilibrios genómicos. El análisis citogenético reveló la presencia de un cromosoma supernumerario metacéntrico.<!-- [et_pb_line_break_holder] --> Mientras que el estudio FISH confirma el origen del cromosoma marcador al mostrar dos señales para subtelómeros 18p y una señal intermedia para<!-- [et_pb_line_break_holder] --> el centrómero 18. El análisis de microarreglos mostró una ganancia en el número de copias de 18,385 Mb dentro de la región 18p.La tetrasomía<!-- [et_pb_line_break_holder] --> tiende a ser el resultado de eventos de novo. El isocromosoma del paciente podría explicarse por la edad materna avanzada, ya que se sabe que tiene<!-- [et_pb_line_break_holder] --> una gran influencia en su formación. A pesar de que no hay genes asociados con las manifestaciones clínicas de i(18p), estas características están<!-- [et_pb_line_break_holder] --> negativamente correlacionadas con los efectos de dosificación de todo el brazo corto. Se le recomendó terapia física y de lenguaje al paciente, la<!-- [et_pb_line_break_holder] --> familia recibió orientación médica y se concientiza sobre la planificación familiar.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> <b>Palabras clave</b>: Tetrasomía 18p; Cromosoma 18; Isocromosoma; Análisis citogenético; Reporte de caso clínico.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>ABSTRACT</b></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> The 18p tetrasomy is a structural chromosomal abnormality with the presence of an extra isochromosome 18p, caused by a nondisjunction<!-- [et_pb_line_break_holder] --> failure during maternal meiosis II. This additional i(18p) occurs in 1 of 180,000 live-born children worldwide, affecting males and females equally. It<!-- [et_pb_line_break_holder] --> is characterized by craniofacial dysmorphisms; ears, nose and throat (ENT) abnormalities; musculoskeletal alterations; and global development delay.<!-- [et_pb_line_break_holder] --> We aim to present the clinical and cytogenetic findings of a 3-year-10-month-old Latin American male with i(18p), to support the gene dosage<!-- [et_pb_line_break_holder] --> effects, comparing his features with the ones reported in literature. This patient was product of the second pregnancy of a 39-year-old woman and<!-- [et_pb_line_break_holder] --> the first son of a 49-year-old man. His main clinical features were microcephaly, facial dysmorphism, generalized hypotonia, and developmental<!-- [et_pb_line_break_holder] --> delay. A blood sample of the patient was required to perform a GTG-banded karyotype and a fluorescence <em>in situ </em>hybridization (FISH) for<!-- [et_pb_line_break_holder] --> chromosome 18 short arm. In addition, an SNP microarray analysis was carried out to detect genomic imbalances. Cytogenetic analysis revealed the<!-- [et_pb_line_break_holder] --> presence of a metacentric supernumerary marker chromosome. The FISH study confirmed the origin of the marker chromosome by showing two<!-- [et_pb_line_break_holder] --> signals for the 18p subtelomere and an intermediate signal for the 18 centromere. The microarray analysis showed a copy number gain of 18,385<!-- [et_pb_line_break_holder] --> Mb within the 18p.Tetrasomy tends to be a result of <em>de novo </em>events. The presence of the patient’s isochromosome could be explained by advanced<!-- [et_pb_line_break_holder] --> maternal age as it is known that this factor has high influence in isochromosome formation. Despite that there were no genes associated with the<!-- [et_pb_line_break_holder] --> i(18p)’s clinical manifestations, these features are negatively correlated with dosage effects of the entire short arm. Physical and language therapy was<!-- [et_pb_line_break_holder] --> recommended to the patient; the family received medical orientation, and awareness in family planning was raised.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Key words</b>: Tetrasomy 18p; Chromosome 18; Isochromosome; Cytogenetic analysis; Case report</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><b>INTRODUCCIÓN</b></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">An 18p isochromosome results from a nondisjunction<!-- [et_pb_line_break_holder] --> failure and a centromeric misdivision during meiosis<!-- [et_pb_line_break_holder] --> II, first described in 1963 by Froland <em>et al. </em>When the<!-- [et_pb_line_break_holder] --> isochromosome is supernumerary, the result is a tetrasomy.<!-- [et_pb_line_break_holder] --> Nowadays, the incidence of the 18p tetrasomy has been<!-- [et_pb_line_break_holder] --> reported in 1:180,000 live-born children worldwide,<!-- [et_pb_line_break_holder] --> tending to be a result of <em>de novo </em>events (Dutra <em>et al.</em>,<!-- [et_pb_line_break_holder] --> 2012; Plaiasu <em>et al.</em>, 2011). Based on the accumulated<!-- [et_pb_line_break_holder] --> environmental and age-related effects on women’s meiotic<!-- [et_pb_line_break_holder] --> machinery, the increase proportion of nondisjunction in<!-- [et_pb_line_break_holder] --> older population pregnancies can be explained (Dutra <em>et</em><!-- [et_pb_line_break_holder] --> <em>al.</em>, 2012; Froland <em>et al.</em>, 1963).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> The structural arrangement on the chromosome,<!-- [et_pb_line_break_holder] --> coupled with overexpression of genes results on craniofacial<!-- [et_pb_line_break_holder] --> dysmorphism, characterized by ophthalmologic, high nasal<!-- [et_pb_line_break_holder] --> bridge, long philtrum, micrognathia, prognathism, and high<!-- [et_pb_line_break_holder] --> arched palate. Hearing loss and recurrent otitis media are<!-- [et_pb_line_break_holder] --> often presented, as well as orthopedic abnormalities and<!-- [et_pb_line_break_holder] --> a global developmental delay (Callen <em>et al.</em>, 1990; Chen <em>et</em><!-- [et_pb_line_break_holder] --> <em>al.</em>, 2014; Zavala <em>et al.</em>, 2009; Wei <em>et al.</em>, 2015; Sebold <em>et al.</em>,<!-- [et_pb_line_break_holder] --> 2010; Nusbaum <em>et al.</em>, 2015).<!-- [et_pb_line_break_holder] --> Despite that chromosome 18 has the lowest gene density<!-- [et_pb_line_break_holder] --> of any human chromosome, it represents approximately<!-- [et_pb_line_break_holder] --> 2.7% of the human genome. For a proper diagnosis,<!-- [et_pb_line_break_holder] --> cytogenetic testing is needed, connoted by fluorescence<!-- [et_pb_line_break_holder] --> <em>in situ </em>hybridization (FISH), multiplex ligation-dependent<!-- [et_pb_line_break_holder] --> probe amplification (MLPA), and comparative genomic<!-- [et_pb_line_break_holder] --> hybridization (CGH) (Wei <em>et al.</em>, 2015).<br /><!-- [et_pb_line_break_holder] --> We aim to present the clinical and molecular cytogenetic<!-- [et_pb_line_break_holder] --> findings in a 3-year-10-month-old Latin American male<!-- [et_pb_line_break_holder] --> with i(18p), to support the genotype-phenotype dosage<!-- [et_pb_line_break_holder] --> effects, comparing his clinical features with the ones<!-- [et_pb_line_break_holder] --> reported in literature.</font></p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">CASE REPORT</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">A 3-year-10-month-old male patient (<a href="#fig1">Figure 1</a>), product<!-- [et_pb_line_break_holder] --> of the second pregnancy of a 39-year-old woman and<!-- [et_pb_line_break_holder] --> the first son of a 49-year-old man -both healthy and<!-- [et_pb_line_break_holder] --> non-consanguineous- was referred to genetic counseling.<!-- [et_pb_line_break_holder] --> The obstetric antecedents showed an uncomplicated<!-- [et_pb_line_break_holder] --> pregnancy, completed prenatal care, and an eutocic<!-- [et_pb_line_break_holder] --> delivery; the patient’s weight at birth was 2,750 g and 49<!-- [et_pb_line_break_holder] --> cm of length. There were no reports of repeated abortions<!-- [et_pb_line_break_holder] --> or malformations neither in the family history nor in close<!-- [et_pb_line_break_holder] --> relatives.<!-- [et_pb_line_break_holder] --> The cephalic support was achieved at the age of 6<!-- [et_pb_line_break_holder] --> months, seating was achieved six months later, and the<!-- [et_pb_line_break_holder] --> beginning of ambulation started at the age of 3 years. At<!-- [et_pb_line_break_holder] --> the time of genetic counseling, the patient was unable<!-- [et_pb_line_break_holder] --> to speak and could not control sphincters. He presented<!-- [et_pb_line_break_holder] --> neonatal respiratory distress syndrome at birth, remaining<!-- [et_pb_line_break_holder] --> in the intensive care unit for 15 days; and suffered from<!-- [et_pb_line_break_holder] --> gastroesophageal reflux during the first 6 months of life.<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><a name="fig1" id="fig1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/XXIX1a02fig1.jpg" width="336" height="228" /><br /><!-- [et_pb_line_break_holder] --> Figure 1</b>. The family pedigree of a 3-year-10-month-old<!-- [et_pb_line_break_holder] --> male (index case II, 2) from the second gestation<!-- [et_pb_line_break_holder] --> of a 39-year-old woman and the first son of a<!-- [et_pb_line_break_holder] -->49-year-old man.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">At physical examination, microcephaly, narrow<!-- [et_pb_line_break_holder] --> forehead with mild prominence in the area of the metopic<!-- [et_pb_line_break_holder] --> suture, mild left palpebral ptosis, antimongoloid palpebral<!-- [et_pb_line_break_holder] --> fissures, narrow and bulbous nose, long philtrum, thin lips,<!-- [et_pb_line_break_holder] --> high palate, and macrognathia were identified. Also, he<!-- [et_pb_line_break_holder] --> presented low implantation of auricular pavilions and short<!-- [et_pb_line_break_holder] --> neck, multiple folds in hands and feet, thumb tending to<!-- [et_pb_line_break_holder] --> adduction, and generalized hypotonia (<a href="#tab1">Table 1</a>, <a href="#fig2">Figure 2</a> and <a href="#fig3">3</a>). Ophthalmological and audiological assessment did not<!-- [et_pb_line_break_holder] --> report an associated pathology. The electroencephalogram,<!-- [et_pb_line_break_holder] --> echocardiogram, and renal ultrasound were reported<!-- [et_pb_line_break_holder] --> normal.</font></p><!-- [et_pb_line_break_holder] --><p><a name="tab1" id="tab1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b>Table 1</b>. Clinical features of patients reported with i(l8p) compared with the index patient.</font><br /><!-- [et_pb_line_break_holder] --> <img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/XXIX1a02tab1.jpg" width="558" height="654" /></p><!-- [et_pb_line_break_holder] --><p align="left"><a name="tab2" id="tab2"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/XXIX1a02fig2.jpg" width="286" height="313" /><br /><!-- [et_pb_line_break_holder] --> Figure 2</b>. a) Full-body image showing postural defects and<!-- [et_pb_line_break_holder] --> low-set ears. b) front view remarking high nasal<!-- [et_pb_line_break_holder] --> bridge and large philtrum c) lateral view showing<!-- [et_pb_line_break_holder] --> low-set, malformed ears, micrognathia and<!-- [et_pb_line_break_holder] -->prognathism.</font></p><!-- [et_pb_line_break_holder] --><p align="left"><a name="fig3" id="fig3"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/XXIX1a02fig3.jpg" width="277" height="624" /><br /><!-- [et_pb_line_break_holder] --> Figure 3</b>. a) Front-view of patient’s hands presenting<!-- [et_pb_line_break_holder] --> camptodactyly and adducted thumbs, b) frontview<!-- [et_pb_line_break_holder] -->of feet, showing adduction of toes.</font></p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">DISCUSSION<!-- [et_pb_line_break_holder] --></font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Chromosome 18 contains 76,117,153 bases, 243 known<!-- [et_pb_line_break_holder] --> genes, and 45 loci implicated in genetic disorders, but there<!-- [et_pb_line_break_holder] --> are not documented genes related to the 18p tetrasomy<!-- [et_pb_line_break_holder] --> phenotype (Nusbaum <em>et al.</em>, 2005). Wei <em>et al.</em>, established<!-- [et_pb_line_break_holder] --> that aberrations of the whole short arm of chromosome 18<!-- [et_pb_line_break_holder] --> are negatively correlated with dosage effects in 18p- (Wei <em>et</em><!-- [et_pb_line_break_holder] --> <em>al.</em>, 2015). In addition, several critical regions implicated in<!-- [et_pb_line_break_holder] --> sensorial hearing loss and strabismus (1-1,192,031 region),<!-- [et_pb_line_break_holder] --> as well as for scoliosis and kyphosis (1-2,931,532 region)</font></p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">METHODS</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">GTG-banded karyotype from peripheral blood cells<!-- [et_pb_line_break_holder] --> cultured in RPMI-1640 supplemented and PB-MaxTM<!-- [et_pb_line_break_holder] --> GIBCO was performed. The 18 short arm FISH was<!-- [et_pb_line_break_holder] --> done with orange spectrum (RP11-145B19) and the<!-- [et_pb_line_break_holder] --> centromeric probe with green spectrum (CEP18).<!-- [et_pb_line_break_holder] --> Subsequently, the patient’s peripheral blood DNA<!-- [et_pb_line_break_holder] --> was extracted to perform the SNP microarray analysis<!-- [et_pb_line_break_holder] --> according to the CytoScan HD protocol of Affymetrix.<!-- [et_pb_line_break_holder] --> Analyzed data, using the Chromosome Analysis Suite<!-- [et_pb_line_break_holder] --> (ChAS) program, was reported and the informed consent<!-- [et_pb_line_break_holder] --> was approved by the parents.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><b>RESULTS</b></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Cytogenetic analysis of the 25 blood cells, with a resolution<!-- [et_pb_line_break_holder] --> of 550-600 bands, revealed the presence of a metacentric<!-- [et_pb_line_break_holder] --> supernumerary marker chromosome. By its structure<!-- [et_pb_line_break_holder] --> and banding pattern, it corresponded to a short arm<!-- [et_pb_line_break_holder] --> isochromosome in chromosome 18 (<a href="#fig4">Figure 4</a>). The FISH<!-- [et_pb_line_break_holder] --> study corroborated the origin of the marker chromosome,<!-- [et_pb_line_break_holder] --> by showing the two signals for the 18p subtelomere at<!-- [et_pb_line_break_holder] --> orange spectrum, and an intermediate signal for the 18<!-- [et_pb_line_break_holder] --> centromere at green spectrum (<a href="#fig5">Figure 5</a>).<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><a name="fig4" id="fig4"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/XXIX1a02fig4.jpg" width="437" height="362" /><br /><!-- [et_pb_line_break_holder] --> Figure 4</b>. GTG-banded karyotype where the short arm isochromosome of chromosome 18, i(18)<!-- [et_pb_line_break_holder] -->(p10) is shown.</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig5" id="fig5"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/XXIX1a02fig5.jpg" width="413" height="326" /><br /><!-- [et_pb_line_break_holder] --> Figure 5</b>. FISH over metaphase, isochromosome i(18p) shows two signals for short arm and one<!-- [et_pb_line_break_holder] --> centromeric. Isochromosome 18p (iso 18p): shows centromere of 18 at green spectrum<!-- [et_pb_line_break_holder] --> and subtelomeric region of 18p at orange spectrum. Normal chromosomes 18 (nl 18): show<!-- [et_pb_line_break_holder] -->only a centromeric signal and a signal for short arm.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">FISH was further analyzed in 100 interphase nuclei to<!-- [et_pb_line_break_holder] --> verify the constitutive state of the marker chromosome;<!-- [et_pb_line_break_holder] --> all had signals corresponding to the isochromosome.<!-- [et_pb_line_break_holder] --> The microarray analysis showed a copy number gain<!-- [et_pb_line_break_holder] --> of 18,385 Mb within the short arm of chromosome 18<!-- [et_pb_line_break_holder] --> (<a href="#fig6">Figure 6</a>). The data indicated the presence of four copies<!-- [et_pb_line_break_holder] --> for each of the probes located between nucleotides<!-- [et_pb_line_break_holder] --> 136,226 and 18,521,285 in the chromosomal bands<!-- [et_pb_line_break_holder] --> of 18p11.32 to 18q11.1, which corresponded to more<!-- [et_pb_line_break_holder] --> than 200 genes. These genomic abnormalities are<!-- [et_pb_line_break_holder] --> identified as: 47,XY,+i(18)(p10)[25].ish;i(18)(p10)(RP11-<!-- [et_pb_line_break_holder] --> 145B19+,CEP18+,RP11-145B19+)[5].arr[hg19]; 18p11.<!-- [et_pb_line_break_holder] --> 32q11.1(136,226-18,521,285)x4.</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig6" id="fig6"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/XXIX1a02fig6.jpg" width="546" height="301" /><br /><!-- [et_pb_line_break_holder] --> Figure 6</b>. Analysis of the microarray in the ChAS software of chromosome 18, where the distribution of SNPs (a),<!-- [et_pb_line_break_holder] --> increase in copy number (b), and genes and variants distributed throughout the chromosome (c) are observed.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><b>DISCUSSION</b></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Chromosome 18 contains 76,117,153 bases, 243 known<!-- [et_pb_line_break_holder] --> genes, and 45 loci implicated in genetic disorders, but there<!-- [et_pb_line_break_holder] --> are not documented genes related to the 18p tetrasomy<!-- [et_pb_line_break_holder] --> phenotype (Nusbaum <em>et al.</em>, 2005). Wei <em>et al.</em>, established<!-- [et_pb_line_break_holder] --> that aberrations of the whole short arm of chromosome 18<!-- [et_pb_line_break_holder] --> are negatively correlated with dosage effects in 18p- (Wei <em>et</em><!-- [et_pb_line_break_holder] --> <em>al.</em>, 2015). In addition, several critical regions implicated in<!-- [et_pb_line_break_holder] --> sensorial hearing loss and strabismus (1-1,192,031 region),<!-- [et_pb_line_break_holder] --> as well as for scoliosis and kyphosis (1-2,931,532 region)<!-- [et_pb_line_break_holder] --> can explain the clinical presentation.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> The patient shares some of the more common<!-- [et_pb_line_break_holder] --> clinical features in 18p tetrasomy, such as: high nasal<!-- [et_pb_line_break_holder] --> bridge, micrognathia, prognathism, high arched palate,<!-- [et_pb_line_break_holder] --> and low set/malformed ears. Also, feeding difficulties<!-- [et_pb_line_break_holder] --> and musculoskeletal disorders were reported. Unlike<!-- [et_pb_line_break_holder] --> to the lack of sex predisposition, the literature reported<!-- [et_pb_line_break_holder] --> a majority of female patients, whereas in this study, we<!-- [et_pb_line_break_holder] --> present a male patient. In addition, the absence of spasticity<!-- [et_pb_line_break_holder] --> and the normal height at birth differ from the reported in<!-- [et_pb_line_break_holder] --> the literature (<a href="#tab1">Table 1</a>).</font></p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">CONCLUSIONS</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Advanced maternal age is known as a risk factor in the<!-- [et_pb_line_break_holder] --> formation of an 18p tetrasomy. At the suspicion of this<!-- [et_pb_line_break_holder] --> etiology, it is important to detect small supernumerary<!-- [et_pb_line_break_holder] --> i(18p) by cytogenetic analysis, FISH, PCR, MLPA and,<!-- [et_pb_line_break_holder] --> in some cases, array techniques. Parental testing is highly<!-- [et_pb_line_break_holder] --> recommended.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Future reports will allow to establish accurate data<!-- [et_pb_line_break_holder] -->on its incidence and prognosis, raising awareness of its<!-- [et_pb_line_break_holder] -->relevance to physicians. The latter will allow the patient<!-- [et_pb_line_break_holder] -->to receive early and proper treatment, specifically for<!-- [et_pb_line_break_holder] -->the ophthalmological and audiological features. Also,<!-- [et_pb_line_break_holder] -->neurological, cardiac and gastrointestinal follow-ups would<!-- [et_pb_line_break_holder] -->prevent the described clinical implications. It is important<!-- [et_pb_line_break_holder] -->to give genetic counseling to the guardians.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>BIBLIOGRAPHY</b></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">1. Callen D.F., Freemantie C.J., Ringenbergs M.L., Baker E.,<!-- [et_pb_line_break_holder] --> Eyre H.J. (1990) The isochromosome 18p syndrome:<!-- [et_pb_line_break_holder] --> Confirmation of cytogenetic diagnosis in nine cases by <em>in</em><!-- [et_pb_line_break_holder] --> <em>situ </em>hybridization. American Journal of Human Genetics<!-- [et_pb_line_break_holder] -->47, 3rd ser.: 493-498.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 2. Chen C., Lin C., Ko T., Chern S., Chen Y., Wu P., Wang W.<!-- [et_pb_line_break_holder] --> (2014) Interphase FISH on uncultured amniocytes at<!-- [et_pb_line_break_holder] --> repeat amniocentesis for rapid confirmation of lowlevel<!-- [et_pb_line_break_holder] --> mosaicism for tetrasomy 18p. Taiwanese Journal of<!-- [et_pb_line_break_holder] -->Obstetrics and Gynecology 53 (1): 126-128.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 3. Dutra A.N., Mancini T., Takeno S.S., Oliveira M.M., Kim C.,<!-- [et_pb_line_break_holder] --> Perez A.A., Melaragno M. (2012) Different Conformation<!-- [et_pb_line_break_holder] --> of Two Supernumerary 18p Isochromosomes, One with<!-- [et_pb_line_break_holder] --> a Concomitant Partial 18q Trisomy. Cytogenetic and<!-- [et_pb_line_break_holder] -->Genome Research Cytogenet Genome Res. 138 (1): 1-4.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 4. Froland A., Holst G., Terslev E. (1963) Multiple anomalies<!-- [et_pb_line_break_holder] -->associated with an extra small autosome. 85: 99-106.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 5. Nusbaum C., Zody M.C., Borowsky M.L., Langer E.S. (2005)<!-- [et_pb_line_break_holder] --> DNA sequence and analysis of human chromosome 18.<!-- [et_pb_line_break_holder] --> Nature 438 (7068): 696.<!-- [et_pb_line_break_holder] --></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 6. Plaiasu V., Ochiana D., Motei G., Georgescu A. (2011) A rare<!-- [et_pb_line_break_holder] --> Chromosome Disorder- Isochromosome 18p syndrome.<!-- [et_pb_line_break_holder] --> MAEDICA a Journal of Clinical Medicine 6 (2): 132-136.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 7. Sebold C., Roeder E., Zimmerman M., Soileau B., Heard P.,<!-- [et_pb_line_break_holder] --> Carter E., Cody J.D. (2010) Tetrasomy 18p: Report of the<!-- [et_pb_line_break_holder] --> molecular and clinical findings of 43 individuals. American<!-- [et_pb_line_break_holder] --> Journal of Medical Genetics Part A, 152A (9): 2164-2172.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 8. Takeda K., Okamura T., Hasegawa T. (1989) Sibs with tetrasomy<!-- [et_pb_line_break_holder] --> 18p born to a mother with trisomy 18p. Journal of Medical<!-- [et_pb_line_break_holder] --> Genetics 26 (3): 195-197. doi:10.1136/jmg.26.3.195.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 9. Zavala J., Ramirez M., Medina R., Heard P., Carter E.,<!-- [et_pb_line_break_holder] --> Crandall A., Escamilla M. (2009) Psychiatric syndromes in<!-- [et_pb_line_break_holder] --> individuals with chromosome 18 abnormalities. American<!-- [et_pb_line_break_holder] --> Journal of Medical Genetics Part B: Neuropsychiatric<!-- [et_pb_line_break_holder] --> Genetics, 9999B.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 10. Wei J., Xie Y., He W., Liu W., Jian W., Chen M., Sun X. (2015)<!-- [et_pb_line_break_holder] --> Clinical Outcome: A Monosomy 18p is Better than a<!-- [et_pb_line_break_holder] --> Tetrasomy 18p. Cytogenetic and Genome Research<!-- [et_pb_line_break_holder] --> Cytogenet Genome Res 144 (4): 294-298</font></p><!-- [et_pb_line_break_holder] --></body><!-- [et_pb_line_break_holder] --></html>