Vol. XXVIII Issue 2
Article 2

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><!-- [et_pb_line_break_holder] --><html xmlns="http://www.w3.org/1999/xhtml"><!-- [et_pb_line_break_holder] --><head><!-- [et_pb_line_break_holder] --><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /><!-- [et_pb_line_break_holder] --><title>Untitled Document</title><!-- [et_pb_line_break_holder] --></head><!-- [et_pb_line_break_holder] --><!-- [et_pb_line_break_holder] --><body><!-- [et_pb_line_break_holder] --><p align="right"><font size="3" face="Arial, Helvetica, sans-serif"><strong>ARTÍCULOS ORIGINALES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="4" face="Arial, Helvetica, sans-serif"><strong>HEp-2 cell line as an experimental model to evaluate genotoxic</strong> <!-- [et_pb_line_break_holder] --> <strong>effects of pentavalent inorganic arsenic</strong></font></p><!-- [et_pb_line_break_holder] --><p><i><font size="3" face="Arial, Helvetica, sans-serif"><strong>HEp-2 como modelo experimental para evaluar los efectos</strong> <strong>genotóxicos del arsénico inorgánico pentavalente</strong></font></i></p><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">Andrioli N.B.<sup>1,*,÷</sup>, Chaufan G.<sup>2, ÷</sup>, Coalova I.<sup>2</sup>, Ríos de Molina M.C.<sup>2</sup>, Mudry M.D.<sup>1</sup></font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><sup>1</sup> Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Grupo de Investigación <!-- [et_pb_line_break_holder] --> en Biología Evolutiva (GIBE), CONICET- Universidad de Buenos Aires, Instituto Instituto de Ecología, Genética y Evolución de Buenos Aires <!-- [et_pb_line_break_holder] --> (IEGEBA), Buenos Aires, Argentina.<br /><!-- [et_pb_line_break_holder] --> <sup>2</sup> Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Enzimología, Estrés <!-- [et_pb_line_break_holder] --> y Metabolismo (LEEM), CONICET- Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales <!-- [et_pb_line_break_holder] --> (IQUIBICEN), Buenos Aires, Argentina.<br /><!-- [et_pb_line_break_holder] --> *Corresponding author: <a href="mailto:nancyandrioli@gmail.com">nancyandrioli@gmail.com</a><br /><!-- [et_pb_line_break_holder] --><sup>÷</sup> These authors contributed equally to this work.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Fecha de recepción</b>: 11/01/2017<br /><!-- [et_pb_line_break_holder] --> <b>Fecha de aceptación de versión final</b>: 30/06/2017</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>ABSTRACT</b></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> Early detection of toxic events induced by xenobiotics is necessary for a proper assessment of human risk after the exposure to those agents.<!-- [et_pb_line_break_holder] --> The aim of this work was to evaluate the cell line HEp-2 as an experimental model to determine the genotoxic effects of sodium arsenate. To<!-- [et_pb_line_break_holder] --> this end, we determined the metabolic activity cells by the MTT test on seven concentrations of arsenate that range from 27 to 135,000 μM,<!-- [et_pb_line_break_holder] --> obtaining the median lethal concentration (LC50), the lowest observed effect concentration (LOEC), and the not observed effect concentration<!-- [et_pb_line_break_holder] --> (NOEC) of sodium arsenate at 24 h of exposition. According to the cytotoxic response obtained, we evaluated the genotoxic effect of the 27 and<!-- [et_pb_line_break_holder] --> 270 μM concentrations by using the micronucleus assay and chromosomal aberrations test. We found a statistically significant increase (p<0.05)<!-- [et_pb_line_break_holder] --> in the frequency of micronuclei between control cultures and those exposed to the highest concentration of sodium arsenate. Furthermore, the<!-- [et_pb_line_break_holder] --> frequencies of nucleoplasmic bridges and tripolar mitosis were significantly higher in cell cultures exposed to the above concentrations compared to<!-- [et_pb_line_break_holder] --> the control cultures (p<0.05). The participation of the glutathione system as response to the arsenate exposition was also analyzed, and a statistically<!-- [et_pb_line_break_holder] --> significant increase in the glutathione content was found in those cells exposed to 27 μM of arsenate. The Glutathione S-transferase activity did<!-- [et_pb_line_break_holder] --> not increase in the exposed cells compared to control cells, suggesting that the arsenate reduction involved other metabolic pathways in the HEp-2<!-- [et_pb_line_break_holder] --> cells. These results confirm that, under the conditions carried out in this study, sodium arsenate is genotoxic for HEp-2 cells. Therefore, we suggest<!-- [et_pb_line_break_holder] --> that this cell line would be a good model for the assessment of the cytotoxic and genotoxic effects of xenobiotics on human cells.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Key words</b>: Cytotoxicity; Genotoxicity; Glutathione; HEp-2 cell line</font>.</p><!-- [et_pb_line_break_holder] --><p><b><font size="2" face="Arial, Helvetica, sans-serif">RESUMEN</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">La detección temprana de eventos tóxicos inducidos por xenobióticos es necesaria para una adecuada evaluación del riesgo humano ante<!-- [et_pb_line_break_holder] --> la exposición a dichos agentes. El objetivo de este trabajo fue evaluar a la línea celular HEp-2 como modelo experimental para determinar los<!-- [et_pb_line_break_holder] --> efectos genotóxicos del arseniato de sodio. Para ello, se determinó la actividad metabólica de las células mediante el ensayo de MTT, en siete<!-- [et_pb_line_break_holder] --> concentraciones de arseniato de sodio en el rango 27-135.000 μM, determinando la concentración letal media (LC50), la menor concentración de<!-- [et_pb_line_break_holder] --> efecto observado (LOEC) y la mayor concentración de efecto no observado (NOEC) de arseniato de sodio para una exposición de 24 h. Teniendo<!-- [et_pb_line_break_holder] --> en cuenta los datos de citotoxicidad, se evaluó el efecto genotóxico a las concentraciones 27 y 270 μM por medio del ensayo de micronúcleos y<!-- [et_pb_line_break_holder] --> aberraciones cromosómicas, encontrando un aumento estadísticamente significativo en la frecuencia de micronúcleos entre el control y la mayor<!-- [et_pb_line_break_holder] --> concentración arseniato de sodio ensayada. Además, la presencia de puentes nucleoplasmáticos y mitosis tripolar fue significativamente mayor en<!-- [et_pb_line_break_holder] --> ambas concentraciones estudiadas con respecto al control. Se analizó la participación del sistema de glutatión como respuesta a la exposición al<!-- [et_pb_line_break_holder] --> arseniato, encontrándose un aumento estadísticamente significativo en el contenido de glutatión en la concentración de arseniato de 27 μM. La<!-- [et_pb_line_break_holder] --> actividad de la glutatión S-transferasa no aumentó, lo que sugiere que la reducción del arseniato implicó otra vía metabólica en las células HEp-2.<!-- [et_pb_line_break_holder] --> Estos resultados confirman que el arseniato de sodio induce genotoxicidad en células HEp-2 en las condiciones realizadas en este estudio y por lo<!-- [et_pb_line_break_holder] --> tanto este tipo de línea celular es un buen modelo para ensayos de citotoxicidad y genotoxicidad en los cuales se quiere evaluar el riesgo humano.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Palabras clave</b>: Citotoxicidad; Genotoxicidad; Glutatión; HEp - 2.</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><b>INTRODUCTION</b></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">The genotoxic response of the biological system after the<!-- [et_pb_line_break_holder] --> exposition to chemical agents depends on the capacity of<!-- [et_pb_line_break_holder] --> metabolization, metabolic rate, repair enzymes activity and<!-- [et_pb_line_break_holder] --> antioxidant response (Westerink<em>et al.</em>, 2001; Wilkening<em>et</em><!-- [et_pb_line_break_holder] --> <em>al.</em>, 2003; Raisuddinand Jha, 2004). Historically, researchers<!-- [et_pb_line_break_holder] --> have employed different experimental designs, analytical<!-- [et_pb_line_break_holder] --> techniques and biological models to study the genotoxic<!-- [et_pb_line_break_holder] --> potential of certain compounds. Primary cultures or<!-- [et_pb_line_break_holder] --> established cell lines of vertebrates are now commonly<!-- [et_pb_line_break_holder] --> used to analyze the genotoxicity potential of drugs and<!-- [et_pb_line_break_holder] --> complex mixtures. The use of <em>in vitro </em>models is promising<!-- [et_pb_line_break_holder] --> because it reduces the use of experimental animals. An<!-- [et_pb_line_break_holder] --> additional advantage of these models is that multiple<!-- [et_pb_line_break_holder] --> tests can be performed with a relatively small amount<!-- [et_pb_line_break_holder] --> of sample. The human epidermoid laryngeal carcinoma<!-- [et_pb_line_break_holder] --> (HEp-2) cell line would be an ideal model for cytotoxic<!-- [et_pb_line_break_holder] --> and genotoxic tests, due to its availability, stable phenotype,<!-- [et_pb_line_break_holder] --> unlimited life-span, and the fact that it is easy to handle<!-- [et_pb_line_break_holder] --> (Coalova <em>et al.</em>, 2014). Few data exist on the use of HEp-<!-- [et_pb_line_break_holder] --> 2 cells to evaluate the genotoxicity of chemical agents,<!-- [et_pb_line_break_holder] --> despite the fact that some studies were conducted with<!-- [et_pb_line_break_holder] --> this cell line to evaluate the genotoxic effects of natural<!-- [et_pb_line_break_holder] --> products and nanoparticles (Rizo<em>et al.</em>, 2013; Osman <em>et</em><!-- [et_pb_line_break_holder] --> <em>al.</em>, 2005; Andrighetti-Fröhner <em>et al.</em>, 2006; Gomaa <em>et</em><!-- [et_pb_line_break_holder] --> <em>al.</em>, 2015; Ahamed <em>et al.</em>, 2015; Dos Santos Branco <em>et al.</em>,<!-- [et_pb_line_break_holder] --> 2015). Moreover, it is well-known that glutathione and<!-- [et_pb_line_break_holder] --> glutatione-S transferases are involved in the metabolism<!-- [et_pb_line_break_holder] --> of HEp-2 cells (Summer and Wiebel, 1981).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Among the agents studied in toxicology are the<!-- [et_pb_line_break_holder] --> arsenical compounds, especially the inorganic arsenic<!-- [et_pb_line_break_holder] --> species (iAs), which are frequently found as environmental<!-- [et_pb_line_break_holder] --> contaminant. These chemical species may be either of<!-- [et_pb_line_break_holder] --> geogenic and/or anthropogenic origin. Arsenic is a byproduct<!-- [et_pb_line_break_holder] --> of the copper, lead, zinc, tin and gold industry,<!-- [et_pb_line_break_holder] --> as it is found as an impurity of many of these metals<!-- [et_pb_line_break_holder] --> (Albiano and Villaamil Lepori, 2015). It is a metalloid that<!-- [et_pb_line_break_holder] --> in contact with the humid air easily oxidizes to arsenic<!-- [et_pb_line_break_holder] --> trioxide (arsenious anhydride) and, in contact with water,<!-- [et_pb_line_break_holder] --> generates arsenate disodium. This toxic pentavalent is<!-- [et_pb_line_break_holder] --> reduced to the trivalent form, and then to the organic<!-- [et_pb_line_break_holder] --> forms that, in animals, will be excreted by urine. Acute<!-- [et_pb_line_break_holder] --> intoxication causes, in the short term, respiratory<!-- [et_pb_line_break_holder] --> tract irritation, and chronic intoxication produces<!-- [et_pb_line_break_holder] --> multiparenchymal effects, involving the trachea and lung<!-- [et_pb_line_break_holder] --> among other organs (Albiano and Villaamil Lepori 2015).<!-- [et_pb_line_break_holder] --> The cytotoxic and genotoxic effects of iAs,<!-- [et_pb_line_break_holder] --> predominantly of the trivalent form (iAsIII), were widely<!-- [et_pb_line_break_holder] --> reported, both in human epidemiology studies and <em>in</em><!-- [et_pb_line_break_holder] --> <em>vitro </em>and <em>in vivo </em>assays. These studies are based on the<!-- [et_pb_line_break_holder] --> analysis of several end points analysis, such as micronuclei<!-- [et_pb_line_break_holder] --> (MN), sister chromatid exchange (SCE), numerical and<!-- [et_pb_line_break_holder] --> structural chromosome aberrations (CA), arrest of mitosis<!-- [et_pb_line_break_holder] --> and apoptosis (Schuhmacher-Wolz <em>et al.</em>, 2009; Basu <em>et</em><!-- [et_pb_line_break_holder] --> <em>al.</em>, 2004; Yadav and Trivedi, 2009; Ahmed <em>et al.</em>, 2011).<!-- [et_pb_line_break_holder] --> Epidemiologic studies indicate that the human intake<!-- [et_pb_line_break_holder] --> of iAs produces many effects including cancer (IARC,<!-- [et_pb_line_break_holder] --> 2004; Environmental Protection Agency, 2001; European<!-- [et_pb_line_break_holder] --> Chemicals Bureau, 2007). Some studies have revealed<!-- [et_pb_line_break_holder] --> tumor development in mice (Tokar <em>et al.</em>, 2010; Tokar <em>et</em><!-- [et_pb_line_break_holder] --> <em>al.</em>, 2011; Waalkes <em>et al.</em>, 2007) although different studies<!-- [et_pb_line_break_holder] --> in animals models have given doubtful results (Huff <em>et al.</em>,<!-- [et_pb_line_break_holder] --> 2000; Schuhmacher-Wolz <em>et al.</em>, 2009; Hughes <em>et al.</em>, 2011).<!-- [et_pb_line_break_holder] --> Since there are evidences that iAs are not mutagenic<!-- [et_pb_line_break_holder] --> in bacteria or mammalian cells (Rossman <em>et al.</em>, 1980;<!-- [et_pb_line_break_holder] --> Gebel, 2001), the genotoxicity could involve different<!-- [et_pb_line_break_holder] --> mechanisms, such as the biomethylation of iAs (with<!-- [et_pb_line_break_holder] --> subsequent hypomethylation of DNA), changes in the<!-- [et_pb_line_break_holder] --> expression of genes of cell cycle control, DNA repair<!-- [et_pb_line_break_holder] --> genes and oxidative stress due to the interaction with the<!-- [et_pb_line_break_holder] --> glutathione system involved in the metabolization process<!-- [et_pb_line_break_holder] --> (Kitchin, 2001; Miller <em>et al.</em>, 2002; Rossman and Klein,<!-- [et_pb_line_break_holder] --> 2011; Thompson,1993).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Sodium arsenate, the pentavalent inorganic arsenic<!-- [et_pb_line_break_holder] --> (iAsV), is used as biocide in plague control and as a<!-- [et_pb_line_break_holder] --> preservative of various industrial products (<a href="#fig1">Figure 1A</a>). It is<!-- [et_pb_line_break_holder] --> the most predominant species of inorganic arsenic in the<!-- [et_pb_line_break_holder] --> surface water, being a potential source of environmental<!-- [et_pb_line_break_holder] --> contamination and human exposition. It is known that<!-- [et_pb_line_break_holder] --> sodium arsenite (iAsIII) is more toxic than iAsV, presumably<!-- [et_pb_line_break_holder] --> because the cellular uptake of iAsV is difficult due to their<!-- [et_pb_line_break_holder] --> electric charge and competition with the cellular phosphate<!-- [et_pb_line_break_holder] --> (Nakamuro and Sayato, 1987; Kochhar <em>et al.</em>, 1996). In<!-- [et_pb_line_break_holder] --> mammals, including humans, the iAsV is partly reduced<!-- [et_pb_line_break_holder] --> into the cells to AsIII non-enzymatically by glutathione<!-- [et_pb_line_break_holder] --> oxidation or enzymatically catalyzed by reductases and<!-- [et_pb_line_break_holder] --> then methylated, forming monomethylated arsenicals<!-- [et_pb_line_break_holder] --> (MMA) and dimethylated arsenicals (DMA) (<a href="#fig1">Figure<!-- [et_pb_line_break_holder] --> 1B</a>). Differences in the reduction and methylation rates<!-- [et_pb_line_break_holder] --> were found in biological models (Odanaka <em>et al.</em>, 1980;<!-- [et_pb_line_break_holder] --> Vahter, 2002). For example, a study showed that the rate of<!-- [et_pb_line_break_holder] --> metabolic reduction of iAsV was lower in HeLa cells than in<!-- [et_pb_line_break_holder] --> HepG2 cells (Peel <em>et al.</em>, 1991). Therefore, the iAsV in HEp-2<!-- [et_pb_line_break_holder] --> cells could be reduced to iAsIII, by metabolic bioactivation<!-- [et_pb_line_break_holder] --> involving the GSH/GST system, increasing thereby their<!-- [et_pb_line_break_holder] --> genotoxic potential (Carmichael <em>et al.</em>, 1988). Considering<!-- [et_pb_line_break_holder] --> the data registered for cytotoxicity and genotoxicity of iAs<!-- [et_pb_line_break_holder] --> in other models and experimental designs, the aim of the<!-- [et_pb_line_break_holder] --> present work was to apply short-term assays to analyze the<!-- [et_pb_line_break_holder] --> HEp-2 cell line as an experimental model to determine<!-- [et_pb_line_break_holder] --> the genotoxic effects of sodium arsenate (Na2HAsO4), the<!-- [et_pb_line_break_holder] --> less toxic form of inorganic arsenic, in human cells.</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig1" id="fig1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a02fig1.jpg" width="312" height="216" /><br /><!-- [et_pb_line_break_holder] --> Figure 1</b>. Geometry of sodium arsenate formula (A),<!-- [et_pb_line_break_holder] --> and reduction and methylation of AsV (B).<!-- [et_pb_line_break_holder] --> Enzymes: PMP, purine nucleoside phosphorylase;<!-- [et_pb_line_break_holder] --> AMT, arsenic methyltransferase; GST, GSH<!-- [et_pb_line_break_holder] --> S-transferase. iAs: MMAV, pentavalent<!-- [et_pb_line_break_holder] --> monomethylarsonic acid; MMAIII, trivalent<!-- [et_pb_line_break_holder] --> monomethylarsonic acid; DMAV, pentavalent<!-- [et_pb_line_break_holder] --> dimethylarsinic acid; and DMAIII, trivalente<!-- [et_pb_line_break_holder] -->dimethylarsinic acid.</font></p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">MATERIALS AND METHODS</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>Reagents</em><!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Modified Eagle’s medium (MEM), MEM vitamin<!-- [et_pb_line_break_holder] --> solution, MEM non-essential amino acid solution, and<!-- [et_pb_line_break_holder] --> 0.05%tripsin-EDTA, were purchased from Invitrogen<!-- [et_pb_line_break_holder] --> Corporation (Carlsbad, CA, USA). Fetal bovine serum<!-- [et_pb_line_break_holder] --> (FBS) was obtained from BIO-NOS (Buenos Aires,<!-- [et_pb_line_break_holder] --> Argentina). The 1-chloro-2,4-dinitrobenzene (CDNB)<!-- [et_pb_line_break_holder] --> (CAS Nº 97-00-7), 3 - (4,5-dimethyl-thiazol-2-yl)-2,5-<!-- [et_pb_line_break_holder] --> diphenyl-tetrazolium bromide (MTT) (CAS Nº 298-<!-- [et_pb_line_break_holder] --> 93-1), 4′,6-diamidino-2-phenylindole (DAPI) (CAS<!-- [et_pb_line_break_holder] --> Nº 28718-90-3), 5,5-dithiobis-(2-nitrobenzoic acid)<!-- [et_pb_line_break_holder] --> (DTNB) (CAS Nº 69-78-3), cytochalasin B (CAS Nº </font><font size="3" face="Arial, Helvetica, sans-serif">14930-96-2), glutathione (CAS Nº 70-18-8), and sodium<!-- [et_pb_line_break_holder] --> arsenate dibasic heptahydrate (CAS Nº 10048-95-0)<!-- [et_pb_line_break_holder] --> were purchased from Sigma Chemical Co. (St.Louis, MO,<!-- [et_pb_line_break_holder] --> USA). Giemsa (CAS Nº 51811-82-6) was purchased from<!-- [et_pb_line_break_holder] -->Biopur S.R.L. (Riccheri 195 Rosario, Argentina).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>Cell culture<br /><!-- [et_pb_line_break_holder] --></em><!-- [et_pb_line_break_holder] --> The human cell line HEp-2 was obtained from the ABAC<!-- [et_pb_line_break_holder] --> (<em>Asociación Banco Argentino de Células</em>, Ciudad Autónoma<!-- [et_pb_line_break_holder] --> de Buenos Aires, Argentina) and it was cultured in minimal<!-- [et_pb_line_break_holder] --> essential medium (MEM) supplemented with 10% heatinactivated<!-- [et_pb_line_break_holder] --> fetal bovine serum (FBS), 100 units/ml penicillin,<!-- [et_pb_line_break_holder] --> 100 mg/ml streptomycin and 2.5 μg/ml amphotericin B.<!-- [et_pb_line_break_holder] --> Cells were cultured at 37ºC in a humidified atmosphere of<!-- [et_pb_line_break_holder] --> 5% CO2 and 95% air. Cell culture medium was renewed<!-- [et_pb_line_break_holder] --> twice a week. After 7 days, cells became confluent and<!-- [et_pb_line_break_holder] --> ready to use. For all experiments, confluent attached cells<!-- [et_pb_line_break_holder] --> were removed from cell culture dishes with 0.25% sterile<!-- [et_pb_line_break_holder] --> trypsin and diluted with MEM/10% FBS. For MTT assay<!-- [et_pb_line_break_holder] --> cells were reincubated into 96-well plates (0.2 ml; 2 x104<!-- [et_pb_line_break_holder] --> cells/well), cytokinesis-block micronucleus (CBMN) assay<!-- [et_pb_line_break_holder] --> was performed into 6-well plates (2 ml; 3.8 x 105 cells/<!-- [et_pb_line_break_holder] --> well), whereas GST activity and GSH content assays were<!-- [et_pb_line_break_holder] --> performing reincubating the cells into Petri dishes (8 ml;<!-- [et_pb_line_break_holder] --> 7.5 x 106 cell/plates).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>MTT assay</em><br /><!-- [et_pb_line_break_holder] --> To determine the range of concentrations of arsenate<!-- [et_pb_line_break_holder] --> that keep the metabolic activity of cells, we exposed cell<!-- [et_pb_line_break_holder] --> cultures to concentrations of iAsV ranging from 27 to<!-- [et_pb_line_break_holder] --> 27,000 μM. We used the method of Mossman (1983), with<!-- [et_pb_line_break_holder] --> minor modifications. Briefly, cells were exposed for 24 h in<!-- [et_pb_line_break_holder] --> serum-free medium to different dilutions of iAsV. Following<!-- [et_pb_line_break_holder] --> incubation, treatment cell culture medium was removed;<!-- [et_pb_line_break_holder] --> cells were washed with PBS and replaced with 1 mg/ml<!-- [et_pb_line_break_holder] --> of sterilized MTT solution. This MTT solution was freshly<!-- [et_pb_line_break_holder] --> prepared in MEM containing no FBS, since it has been<!-- [et_pb_line_break_holder] --> shown that FBS can dose-dependently inhibit formazan<!-- [et_pb_line_break_holder] --> crystals formation, with a 50% decrease in these crystals<!-- [et_pb_line_break_holder] --> when media with 5-10% FBS is used (Talorete, 2007).<!-- [et_pb_line_break_holder] --> The plates with added MTT solution were then placed in<!-- [et_pb_line_break_holder] --> the 5% CO2 incubator for 90 min at 37ºC. MTT solution<!-- [et_pb_line_break_holder] --> was removed and 200 μl of ethanol was added to each<!-- [et_pb_line_break_holder] --> well to dissolve the blue formazan crystals. Optical density<!-- [et_pb_line_break_holder] --> was measured at 570 nm with background subtraction at<!-- [et_pb_line_break_holder] --> 655 nm, in a BIO-RAD Benchmark microplate reader<!-- [et_pb_line_break_holder] --> (BIO-RAD Laboratories, Hercules, CA). Results were<!-- [et_pb_line_break_holder] --> expressed as percentage of control (100% cell metabolic<!-- [et_pb_line_break_holder] --> activity). Each assay involved 12 wells per condition and<!-- [et_pb_line_break_holder] --> was performed in triplicate.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>Glutathione-S-transferase activity (GST) and Glutathione</em><!-- [et_pb_line_break_holder] --> <em>Equivalents Content (GSH)</em><br /><!-- [et_pb_line_break_holder] --> For the determination of GST activity and GSH content,<!-- [et_pb_line_break_holder] --> cells were grown at confluence in Petri dishes, washed<!-- [et_pb_line_break_holder] --> twice with PBS, and then treated with 27 and 270 mM<!-- [et_pb_line_break_holder] --> iAsV for 24 h. Then, cells were harvested, sonicated, and<!-- [et_pb_line_break_holder] --> determinations were carried out in 11,000 x g supernatants.<!-- [et_pb_line_break_holder] --> Glutathione-S-transferase (EC 1.11.1.9) activity was<!-- [et_pb_line_break_holder] --> measured by the Habig technique (Habig <em>et al.</em>, 1976).<!-- [et_pb_line_break_holder] --> Briefly, standard assay mixture contained the enzymatic<!-- [et_pb_line_break_holder] --> sample, 100 mM GSH, and 100 mM 1-chloro-2,4-<!-- [et_pb_line_break_holder] --> dinitrobenzene (CDNB) in ethanol, in 100 mM phosphate<!-- [et_pb_line_break_holder] --> buffer (pH 6.5), to a final volume of 0.8 mL. After adding<!-- [et_pb_line_break_holder] --> CDNB, the change in absorbance at 340 nm was followed<!-- [et_pb_line_break_holder] --> for 120 s. One GST unit was defined as the amount of<!-- [et_pb_line_break_holder] --> enzyme that catalyzes the formation of 1 mmol of GSDNB<!-- [et_pb_line_break_holder] --> per minute at 25ºC. Results were expressed as<!-- [et_pb_line_break_holder] --> percentage of control.<!-- [et_pb_line_break_holder] --> Glutathione levels were measured following the<!-- [et_pb_line_break_holder] --> method of Anderson (1985), with modifications. Briefly,<!-- [et_pb_line_break_holder] --> 100 μL supernatant from the 11,000 × g sample was<!-- [et_pb_line_break_holder] --> acidified with 50 μL of 10%sulfosalicylic acid. After<!-- [et_pb_line_break_holder] --> centrifugation at 8,000 × g for 10 min, supernatant<!-- [et_pb_line_break_holder] --> (containing acid-soluble GSH) aliquots were mixed with 6<!-- [et_pb_line_break_holder] --> mM 5,5-dithiobis-(2-nitrobenzoic) acid (DTNB) in 0.143<!-- [et_pb_line_break_holder] --> M buffer sodium phosphate (pH 7.5), (containing 6.3 mM<!-- [et_pb_line_break_holder] --> EDTA). Absorbance at 412 nm was measured after 30<!-- [et_pb_line_break_holder] --> min incubation at room temperature. GSH content was<!-- [et_pb_line_break_holder] --> determined by standard curve generated with a known<!-- [et_pb_line_break_holder] --> GSH amountas reference. Results were expressed as nmol<!-- [et_pb_line_break_holder] --> thiols (GSH equivalents) per mg proteins and presented as<!-- [et_pb_line_break_holder] --> percentage of control.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>Cytokinesis-block micronucleus (CBMN) <!-- [et_pb_line_break_holder] --> assay</em><!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> According to the results obtained on metabolic activity for<!-- [et_pb_line_break_holder] -->MTT test, the CBMN assay was performed by exposing<!-- [et_pb_line_break_holder] -->cells at 27 and 270 μM of iAsV. Following the method<!-- [et_pb_line_break_holder] --> of Fenech (2007), the cells were sub-cultured on glass<!-- [et_pb_line_break_holder] --> coverslips in 6-well plates. Twenty four hours after seeding,<!-- [et_pb_line_break_holder] --> the medium was removed and cells were treated with iAsV<!-- [et_pb_line_break_holder] --> at 27 and 270 μM in serum-free medium for 24 h. Then,<!-- [et_pb_line_break_holder] --> cells were washed with PBS and incubated with medium<!-- [et_pb_line_break_holder] --> containing cytochalasin B (final concentration 4 μg/ml)<!-- [et_pb_line_break_holder] --> for 18 h. After these treatments, cells were washed with<!-- [et_pb_line_break_holder] --> PBS and fixed with glacial acetic acid: methanol (1:3 v/v)<!-- [et_pb_line_break_holder] --> for 10 min at room temperature. Then cells were washed<!-- [et_pb_line_break_holder] --> twice with PBS, stained with Giemsa (10% p/v), washed<!-- [et_pb_line_break_holder] --> again with PBS and after that, the slides were mounted.<!-- [et_pb_line_break_holder] --> <em>Scoring of slides and data analysis</em><!-- [et_pb_line_break_holder] --> The slides were examined under a Leica DMLB light<!-- [et_pb_line_break_holder] --> microscope (1000×). One thousand cells from the negative<!-- [et_pb_line_break_holder] --> control and treated groups were examine to calculate<!-- [et_pb_line_break_holder] --> the binucleate cells frequency (BN), the micronuclei<!-- [et_pb_line_break_holder] --> frequency (MNi), and the nuclear division index (NDI).<!-- [et_pb_line_break_holder] --> The chromosome aberrations frequency (CA) as abnormal<!-- [et_pb_line_break_holder] --> division were quantified at the same time that the MNi.<!-- [et_pb_line_break_holder] --> % MNi= (Nº of BN cells whit MNi / 1000 BN cells) x100<!-- [et_pb_line_break_holder] --> NDI= (M1 + 2M2 + 3M3 + 4M4) / N, where M1–M4<!-- [et_pb_line_break_holder] --> represent the number of cells with 1-4 nuclei and N is the<!-- [et_pb_line_break_holder] --> total number of cells scored.<!-- [et_pb_line_break_holder] --> % CA= (N° of chromosomal aberration / 1000 cells) x 100</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>Statistical analysis</em><!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Each experiment was performed three times in different<!-- [et_pb_line_break_holder] -->weeks. Statistical analysis were performed using oneway<!-- [et_pb_line_break_holder] -->analysis of variance (ANOVA) followed by Dunnet’s<!-- [et_pb_line_break_holder] --> test using significant levels of p<0.05. Normality and<!-- [et_pb_line_break_holder] --> homogeneity of variances were tested with the Lilliefors<!-- [et_pb_line_break_holder] --> and Barlett tests, respectively. The LC50 value was estimated<!-- [et_pb_line_break_holder] --> by nonlinear regression sigmoidal dose-response method.<!-- [et_pb_line_break_holder] --> Graph Pad Prism 4 software was used for all statistical<!-- [et_pb_line_break_holder] --> analysis.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><b>RESULTS</b></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>Metabolic activity cells</em><!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> The HEp-2 cell line was assayed using MTT assay to<!-- [et_pb_line_break_holder] -->examine the effect of 27 to 135,000 μM iAsV (27; 270;<!-- [et_pb_line_break_holder] --> 27,000; 54,000; 64,500; 80,600; 121,000; and 135,000 μM).<!-- [et_pb_line_break_holder] --> The corresponding LC50, LOEC (lowest observed effect<!-- [et_pb_line_break_holder] --> concentration), and NOEC (no observed effect concentration)<!-- [et_pb_line_break_holder] --> were determined at 24 h (<a href="#tab1">Table 1</a> and <a href="#fig2">Figure 2</a>).<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><a name="tab1" id="tab1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b>Table 1</b>. Toxicity values for HEp-2 cell line exposed to sodium arsenate for 24 h.<br /><!-- [et_pb_line_break_holder] --> <img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a02tab1.jpg" width="532" height="98" /><br /><!-- [et_pb_line_break_holder] -->LC50; median lethal concentration. LOEC; lowest observed effect concentration. NOEC; not observed effect concentrations, statistically<!-- [et_pb_line_break_holder] --> determined. LC50 was estimated by nonlinear regression sigmoidal dose-response (variable slope) method. Graph Pad Prism 6 software was used<!-- [et_pb_line_break_holder] -->for all statistical analyses. LC50, LOEC, and NOEC were presented as mean of three independent analyses.</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig2" id="fig2"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a02fig2.jpg" width="293" height="221" /><br /><!-- [et_pb_line_break_holder] --> Figure 2</b>. Dose-response curve for iAsV effects fitted<!-- [et_pb_line_break_holder] --> by non-linear regression. These effects were<!-- [et_pb_line_break_holder] --> evaluated by the MTT test. Data are expressed<!-- [et_pb_line_break_holder] --> as mean + SD (n = 8), relative to control cells<!-- [et_pb_line_break_holder] --> (100% viability). MTT, 3-(4,5-dimethyl-thiazol-2-<!-- [et_pb_line_break_holder] --> yl)-2,5-diphenyltetrazolium bromide; SD, standard<!-- [et_pb_line_break_holder] -->deviation.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>Glutathione content and glutathione S-transferase activity</em> <br /><!-- [et_pb_line_break_holder] --> The glutathione system could participate in the<!-- [et_pb_line_break_holder] --> bioactivation enzymatic or non-enzymatic of AsV by<!-- [et_pb_line_break_holder] --> reduction to AsIII. The results showed a statistically<!-- [et_pb_line_break_holder] --> significant increase in GSH content in cells exposed to<!-- [et_pb_line_break_holder] --> 27 μM iAsV and a statistically significant decrease at 270<!-- [et_pb_line_break_holder] --> μM iAsV, compared to the control (p<0.01and p<0.05,<!-- [et_pb_line_break_holder] --> respectively) (<a href="#fig3">Figure 3A</a>). GST activity did not show<!-- [et_pb_line_break_holder] --> statistically significant differences (<a href="#fig3">Figure 3B</a>).<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><a name="fig3" id="fig3"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a02fig3.jpg" width="506" height="247" /><br /><!-- [et_pb_line_break_holder] --> <b>Figure 3</b>. Glutathione Equivalents Content (A) and Glutathione-S-transferase activity (B). HEp-2<!-- [et_pb_line_break_holder] --> cells were exposed to iAsV at different concentrations (27, and 270 μM) for 24 h. Results<!-- [et_pb_line_break_holder] --> are reported as mean ± S.D. Significant differences between treatments and control are<!-- [et_pb_line_break_holder] -->indicated by *p < 0.05 or **p < 0.01.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>CBMN assay in the HEp-2 cell line</em> <br /><!-- [et_pb_line_break_holder] --> The CBMN assay was performed in the HEp-2 cell line<!-- [et_pb_line_break_holder] --> to evaluate genotoxicity. Taking into account that the<!-- [et_pb_line_break_holder] --> maximum concentration assayed for the genotoxicity<!-- [et_pb_line_break_holder] --> test should not induce more than 50% of the cellular<!-- [et_pb_line_break_holder] --> toxicity found with the MTT assay, the concentrations<!-- [et_pb_line_break_holder] --> of iAsV selected for CBMN were 27 and 270 μM. The<!-- [et_pb_line_break_holder] --> NDI (<a href="#fig5">Figure 4A</a>), which ranges from 1.0 (cells have failed<!-- [et_pb_line_break_holder] --> to divide) to 2.0 (all cells have divided once), was similar<!-- [et_pb_line_break_holder] --> for the two concentrations tested, with no significant<!-- [et_pb_line_break_holder] --> differences between the control (1.27), 27 μM (1.35) and<!-- [et_pb_line_break_holder] --> 270 μM (1.15). A significant difference was found in the<!-- [et_pb_line_break_holder] --> frequency of micronuclei, between control and 270 μM<!-- [et_pb_line_break_holder] --> iAsV (p<0.05) (<a href="#fig4">Figure 4B</a> and <a href="#fig5">Figure 5A</a>). The occurrence<!-- [et_pb_line_break_holder] --> of nucleoplasmic bridges and tripolar mitosis were<!-- [et_pb_line_break_holder] --> significantly higher in both concentrations respect to the<!-- [et_pb_line_break_holder] --> control (<a href="#fig4">Figure 4C and 4D</a>; <a href="#fig4">Figure 5B, 5C and 5D</a>).</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig4" id="fig4"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a02fig4.jpg" width="462" height="393" /><br /><!-- [et_pb_line_break_holder] --> <b>Figure 4</b>. CBMN assay performed in HEp-2 cell line showing (A) nuclear division index,<!-- [et_pb_line_break_holder] --> (B) number of micronuclei per 1,000 binucleated cells, (C) number of tripolar<!-- [et_pb_line_break_holder] --> mitosis per 1,000 binucleated cells, and (D) number of nucleoplasmic bridges<!-- [et_pb_line_break_holder] --> per 1,000 binucleated cells. Results were expressed as mean ± SD (n = 3).<!-- [et_pb_line_break_holder] --> Significant differences between treatments and control are indicated by * (***p<!-- [et_pb_line_break_holder] -->< 0.0001, **p < 0.001, and *p < 0.05).</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig5" id="fig5"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a02fig5.jpg" width="530" height="135" /><br /><!-- [et_pb_line_break_holder] --> Figure 5</b>. Nuclear morphology analysis of HEp-2 cell line. CBMN assay, an established biomarker for genomic instability, to<!-- [et_pb_line_break_holder] --> evaluate susceptibility of HEp-2 cell line by measuring sodium arsenate-induced chromosomal damage endpoints<!-- [et_pb_line_break_holder] --> (A, micronuclei; B,C nucleoplasmic bridges; and D, tripolar mitosis).<!-- [et_pb_line_break_holder] --> Nuclear DNA was stained with DAPI dye and visualized by fluorescence microscopy using filters for DAPI (λexc:<!-- [et_pb_line_break_holder] -->330-380 nm; λem: 435-485 nm). </font></p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">DISCUSSION</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">The iAsV is present in nature, and its origin can be either<!-- [et_pb_line_break_holder] -->geogenic or anthropogenic, in the latter as a result of<!-- [et_pb_line_break_holder] -->industrial wastes. Moreover, iAsV is the most predominant<!-- [et_pb_line_break_holder] -->species of inorganic arsenic in the surface water, where<!-- [et_pb_line_break_holder] -->the oxygen level is high enough to avoid the reduction to<!-- [et_pb_line_break_holder] -->iAsIII. The reduction of iAsV to iAsIII within the cell could<!-- [et_pb_line_break_holder] -->involve the participation of GSH and GST, both of which<!-- [et_pb_line_break_holder] -->are present in HEp-2 cells (Summer and Wiebel, 1981).<!-- [et_pb_line_break_holder] -->However, our results showed an increase of the GSH<!-- [et_pb_line_break_holder] -->level without increasing GST activity by exposing cells to<!-- [et_pb_line_break_holder] -->different concentrations of iAsV. These data indicate that<!-- [et_pb_line_break_holder] -->GST is not involved in metabolization of iAsV, and that the<!-- [et_pb_line_break_holder] -->increase of GSH due to iAsV exposition could be attributed<!-- [et_pb_line_break_holder] -->to non-enzymatic reduction to iAsIII. Moreover, the GSH<!-- [et_pb_line_break_holder] -->increase found in HEp-2 cells treated with iAsVcould be<!-- [et_pb_line_break_holder] -->related to an induction of Γ-glutamylcysteine synthetasethe<!-- [et_pb_line_break_holder] -->enzyme that controls the biosynthesis of GSH-due<!-- [et_pb_line_break_holder] -->to the redox imbalance produced by iAsV. Furthermore,<!-- [et_pb_line_break_holder] -->GSH content decreased below control levels at higher<!-- [et_pb_line_break_holder] -->concentrations of arsenic as a result of GSH consumption<!-- [et_pb_line_break_holder] -->by reduction iAsV to iAsIII.<br /><!-- [et_pb_line_break_holder] --></font><font size="3" face="Arial, Helvetica, sans-serif">The literature about the mutagenicity of iAsIII and iAsV<!-- [et_pb_line_break_holder] --> indicates that DNA is not the target of these chemical<!-- [et_pb_line_break_holder] --> species (Gebel, 2001). In addition, an indirect genotoxic<!-- [et_pb_line_break_holder] --> effect of iAsIII and iAsV is involved due to their interaction<!-- [et_pb_line_break_holder] --> with different molecules such as repair enzymes, cell cycle<!-- [et_pb_line_break_holder] --> control proteins, apoptosis related gene products, nuclear<!-- [et_pb_line_break_holder] --> lamins, defense cellular system against oxidative damage<!-- [et_pb_line_break_holder] --> (GSH), metabolization enzymes, and tubulines of the<!-- [et_pb_line_break_holder] --> mitotic spindle (Kirsch-Volders<em>et al.</em>, 2003). Studies on<!-- [et_pb_line_break_holder] --> iAsV genotoxicity show that at 24 h of exposition, iAsV<!-- [et_pb_line_break_holder] --> 1 μM is the lowest dose that induce MNi in CHO cells,<!-- [et_pb_line_break_holder] --> whereas 16 μM and 10 μM were the lowest concentration<!-- [et_pb_line_break_holder] --> of iAsV that induced chromosomal aberrations in<!-- [et_pb_line_break_holder] --> human umbilical cord fibroblasts and in human periferal<!-- [et_pb_line_break_holder] --> lymphocytes, respectively (Dopp<em>et al.</em>, 2004; Florea<em>et al.</em>,<!-- [et_pb_line_break_holder] --> 2005; Kligerman<em>et al.</em>, 2003; Oya-Ohta<em>et al.</em>, 1996).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> The two concentrations of iAsV tested in this study (27<!-- [et_pb_line_break_holder] --> and 270 μM) induced chromosomal abnormalities and<!-- [et_pb_line_break_holder] --> MNi at 24 h after treatment, although only the highest<!-- [et_pb_line_break_holder] --> concentration induced a significant statistically increase<!-- [et_pb_line_break_holder] --> of MNi in HEp-2 cells. To analyze the genotoxicity of a<!-- [et_pb_line_break_holder] --> chemical agent, the cytotoxicity should be very low or null<!-- [et_pb_line_break_holder] --> for the concentrations tested (Gebel, 2001). Conservation<!-- [et_pb_line_break_holder] --> of cell proliferation is necessary to manifest genotoxicity<!-- [et_pb_line_break_holder] --> through MNi formation, since the MNi are formed during<!-- [et_pb_line_break_holder] --> cellular division. In the present study concentrations<!-- [et_pb_line_break_holder] --> inducing MNi do not affect cell proliferation in HEp-2<!-- [et_pb_line_break_holder] --> as indicated by the MNi formed by chromatin fragments<!-- [et_pb_line_break_holder] --> or whole chromosomes, when the spindle attachment<!-- [et_pb_line_break_holder] --> fails. Whereas the spindle failure was attributed to iAsIII<!-- [et_pb_line_break_holder] --> exposition (Sciandrello <em>et al.</em>, 2002), the tripolar spindles<!-- [et_pb_line_break_holder] --> would indicate its effects on microtubules and microtubule<!-- [et_pb_line_break_holder] --> associated proteins (MAPs). This is in accordance with<!-- [et_pb_line_break_holder] --> other studies (Liao <em>et al.</em>, 2007) and with the mechanism<!-- [et_pb_line_break_holder] --> proposed by several authors to explain the toxicity of iAsV,<!-- [et_pb_line_break_holder] --> such as the depletion of ATP formation by replacement<!-- [et_pb_line_break_holder] --> of phosphate during oxidative phosphorylation (Gebel,<!-- [et_pb_line_break_holder] --> 2001). The genotoxic agents which exert their mode of<!-- [et_pb_line_break_holder] --> action without binding to DNA show a threshold and a<!-- [et_pb_line_break_holder] --> sublinear concentration-effect relationship (Elhajouji <em>et al.</em>,<!-- [et_pb_line_break_holder] --> 1997). However, it is still unclear if the genotoxicity of<!-- [et_pb_line_break_holder] --> iAs is characterized by this mode of action (Rudel <em>et al.</em>,<!-- [et_pb_line_break_holder] --> 1996; Raja <em>et al.</em>, 2013). This is an interesting subject that<!-- [et_pb_line_break_holder] --> could be included in future studies. There is currently a<!-- [et_pb_line_break_holder] --> need for rapid and efficient delivery of results in <em>in vitro</em> systems that are actually predictive of the <em>in vivo </em>situation.<!-- [et_pb_line_break_holder] --> This requires a versatile system in daily use, which shortens<!-- [et_pb_line_break_holder] --> experimentation times. At the same time, the use of <em>in</em><!-- [et_pb_line_break_holder] --> <em>vitro </em>models reduces the number of animal experiments<!-- [et_pb_line_break_holder] --> needed to address genotoxicity studies. According to our<!-- [et_pb_line_break_holder] --> results, the biological model of HEp-2 cells seems to satisfy<!-- [et_pb_line_break_holder] --> these criteria. In conclusion, under the conditions carried<!-- [et_pb_line_break_holder] --> out in this study, the HEp-2 cell line allowed us to detect<!-- [et_pb_line_break_holder] --> the cytotoxic and genotoxic effects of iAsV. In addition,<!-- [et_pb_line_break_holder] --> this model could be an alternative in a battery of assays<!-- [et_pb_line_break_holder] --> of genotoxicity for the evaluation of human risk after the<!-- [et_pb_line_break_holder] --> exposition to chemical substances, either of natural origin<!-- [et_pb_line_break_holder] -->or associated with occupational risks.</font></p><!-- [et_pb_line_break_holder] --><p><b><font size="2" face="Arial, Helvetica, sans-serif">ACKNOWLEDGEMENT</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">This work was supported by grants from CONICET Argentina<!-- [et_pb_line_break_holder] --> (Consejo Nacional de Investigaciones<!-- [et_pb_line_break_holder] --> Científicas y Técnicas, PIP 11220090100492) and from<!-- [et_pb_line_break_holder] --> Universidad de Buenos Aires, Argentina (UBACyT 01/<!-- [et_pb_line_break_holder] --> W985, UBACyT 20020120200176BA, and MDMUBACyT<!-- [et_pb_line_break_holder] --> X154). </font></p><!-- [et_pb_line_break_holder] --><p><b><font size="2" face="Arial, Helvetica, sans-serif">CONFLICT OF INTEREST</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">The authors declare that there are no conflicts of interest.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>BIBLIOGRAFÍA</b></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">1. Ahamed M., Alhadlaq H.A., Ahmad J., Siddiqui M.A.,<!-- [et_pb_line_break_holder] --> Khan S.T., Musarrat J., Al- Khedhairy A.A. (2015)<!-- [et_pb_line_break_holder] --> Comparative cytotoxicity of dolomite nanoparticles<!-- [et_pb_line_break_holder] --> in human larynx HEp2 and liver HepG2 cells. J. App.<!-- [et_pb_line_break_holder] --> Toxicol. 35(6): 640-650.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 2. Ahmed S., Khoda S.M.E., Rekha R.S., Gardner R.M.,<!-- [et_pb_line_break_holder] --> Ameer S.S., Moore S., Raqib R. (2011) Arsenicassociated<!-- [et_pb_line_break_holder] --> oxidative stress, inflammation, and immune<!-- [et_pb_line_break_holder] --> disruption in human placenta and cord blood. Environ.<!-- [et_pb_line_break_holder] --> Health Persp. 119(2): 258-264.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 3. Albiano N. F., Villamil Lepori, E. (2015). Toxicologia<!-- [et_pb_line_break_holder] --> Laboral: Criterios para el monitoreo de la salud de los<!-- [et_pb_line_break_holder] --> trabajadores expuestos a sustancias quimicas peligrosas/<!-- [et_pb_line_break_holder] --> Ampliada. Buenos Aires: Superintendencia de riesgos<!-- [et_pb_line_break_holder] --> del trabajo, 522.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 4. Anderson M.E. (1985) Determination of glutathione and<!-- [et_pb_line_break_holder] --> glutathione disulfide in biological samples.Methods<!-- [et_pb_line_break_holder] --> Enzymol. 113: 548-553.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 5. Andrighetti-Fröhner C.R., Kratz J.M., Antonio R.V.,<!-- [et_pb_line_break_holder] --> Creczynski-Pasa T.B., Barardi C.R., Simões C.M.<!-- [et_pb_line_break_holder] --> (2006) In vitro testing for genotoxicity of violacein<!-- [et_pb_line_break_holder] --> assessed by Comet and Micronucleus assays. Mutat.<!-- [et_pb_line_break_holder] --> Res. 603(1): 97-103.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 6. Basu A., Ghosh P., Das J.K., Banerjee A., Ray K., Giri A.K.<!-- [et_pb_line_break_holder] --> (2004) Micronuclei as biomarkers of carcinogen exposure<!-- [et_pb_line_break_holder] --> in populations exposed to arsenic through drinking water<!-- [et_pb_line_break_holder] --> in West Bengal, India: a comparative study in three cell<!-- [et_pb_line_break_holder] --> types. Cancer Epidemiol Biomarkers Prev. 13(5): 820-827.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 7. Carmichael J., Mitchell J.B., Frietman N., Gaznard A.F.,<!-- [et_pb_line_break_holder] --> Russo A. (1988) Glutathion and related enzyme<!-- [et_pb_line_break_holder] --> activity in human lung cancer cell lines. Br. J. Cancer<!-- [et_pb_line_break_holder] --> 58 (4): 437-440.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 8. Coalova I., Ríos de Molina M.C., Chaufan G. (2014)<!-- [et_pb_line_break_holder] --> Influence of the spray adjuvant on the toxicity effects of<!-- [et_pb_line_break_holder] --> a glyphosate formulation. Toxicol. In Vitro 28(7):1306-<!-- [et_pb_line_break_holder] --> 1311.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 9. Dopp E., Hartmann L.M., Florea A.M., Von<!-- [et_pb_line_break_holder] --> Recklinghausen U., Pieper R., Shokouhi B., Obe G.<!-- [et_pb_line_break_holder] --> (2004) Uptake of inorganic and organic derivatives<!-- [et_pb_line_break_holder] --> of arsenic associated with induced cytotoxic and<!-- [et_pb_line_break_holder] --> genotoxic effects in Chinese hamster ovary (CHO)<!-- [et_pb_line_break_holder] --> cells. Toxicol. Appl. Pharm. 201(2): 156-165.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 10. Dos Santos Branco C., de Lima E.D., Rodrigues T.S.,<!-- [et_pb_line_break_holder] --> Scheffel T.B., Scola G., Laurino C.C.F.C.,Salvador<!-- [et_pb_line_break_holder] --> M. (2015) Mitochondria and redox homoeostasis as<!-- [et_pb_line_break_holder] --> chemotherapeutic targets of Araucaria angustifolia<!-- [et_pb_line_break_holder] --> (Bert.) O. Kuntze in human larynx HEp-2 cancer cells.<!-- [et_pb_line_break_holder] --> Chem-Biol. Interact. 231: 108-118.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 11. Elhajouji A., Tibaldi F., Kirsch-Volders M. (1997) Indication<!-- [et_pb_line_break_holder] --> for thresholds of chromosome non-disjunction versus<!-- [et_pb_line_break_holder] --> chromosome lagging induced by spindle inhibitors in<!-- [et_pb_line_break_holder] --> vitro in human lymphocytes. Mutagenesis 12(3): 133-140.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 12. Environmental Protection Agency (2001) National primary<!-- [et_pb_line_break_holder] --> drinking water regulations, arsenic and clarifications to<!-- [et_pb_line_break_holder] --> compliance and new source contaminants monitoring,<!-- [et_pb_line_break_holder] --> final rule, Federal Register, 66: 6976-7066.<!-- [et_pb_line_break_holder] --></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 13. European Chemicals Bureau (2007) European chemical<!-- [et_pb_line_break_holder] --> substances information system (ESIS).</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 14. Fenech M. (2007) Cytokinesis-block micronucleus cytome<!-- [et_pb_line_break_holder] --> assay. Nat. Prot. 2(5): 1084-1104.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 15. Florea A.M., Yamoah E.N., Dopp E. (2005) Intracellular<!-- [et_pb_line_break_holder] --> calcium disturbances induced by arsenic and its<!-- [et_pb_line_break_holder] --> methylated derivatives in relation to genomic damage<!-- [et_pb_line_break_holder] --> and apoptosis induction. Environ.Health Persp. 113(6):<!-- [et_pb_line_break_holder] --> 659-664.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 16. Gebel T.W. (2001) Genotoxicity of arsenical compounds.<!-- [et_pb_line_break_holder] --> Int. J.Hyg. Environ. Health 203(3): 249-262.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 17. Gomaa I.E., Bhatt S., Liehr T., Bakr M., El-Tayeb T.A.<!-- [et_pb_line_break_holder] --> (2015) Ag and Co/Ag nanoparticles cytotoxicity and<!-- [et_pb_line_break_holder] --> genotoxicity study on hep-2 and blood lymphocytes<!-- [et_pb_line_break_holder] --> cells. Chemical Technology: Key Developments in<!-- [et_pb_line_break_holder] --> Applied Chemistry. Biochemistry and Materials<!-- [et_pb_line_break_holder] --> Science 13.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 18. Habig W.H., Pabst M.J., Jakoby W.B. (1976) Glutathione<!-- [et_pb_line_break_holder] --> S-transferase a from rat liver. Arch.Biochem.Biophys.<!-- [et_pb_line_break_holder] --> 175(2): 710-716.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 19. Huff J., Chan P., Nyska A. (2000) Is the human carcinogen arsenic<!-- [et_pb_line_break_holder] --> carcinogenic to laboratory animals? Toxicol. Sci. 55(1): 17-23.<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">20. Hughes M.F., Beck B.D., Chen Y., Lewis A.S., Thomas D.J.<!-- [et_pb_line_break_holder] --> (2011) Arsenic exposure and toxicology: a historical<!-- [et_pb_line_break_holder] --> perspective. Toxicol. Sci.123(2): 305-332.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 21. IARC (2004) Some drinking-water disinfectants and<!-- [et_pb_line_break_holder] --> contaminants, including arsenic, <em>IARC </em>Monogr.Eval.<!-- [et_pb_line_break_holder] --> Carcinog. Risks Hum. 84: 1-477.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 22. Kirsch-Volders M., Vanhauwaert A., Eichenlaub-Ritter<!-- [et_pb_line_break_holder] --> U., Decordier I. (2003) Indirect mechanisms of<!-- [et_pb_line_break_holder] --> genotoxicity. Toxicol.Lett. 140: 63-74.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 23. Kitchin K.T. (2001) Recent advances in arsenic<!-- [et_pb_line_break_holder] --> carcinogenesis: modes of action, animal model systems,<!-- [et_pb_line_break_holder] --> and methylated arsenic metabolites. Toxicol. Appl.<!-- [et_pb_line_break_holder] --> Pharmacol. 172(3): 249-261.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 24. Kligerman A.D., Doerr C.L., Tennant A.H., Harrington<!-- [et_pb_line_break_holder] --> Brock K., Allen J.W., Winkfield E., Mass M.J. (2003)<!-- [et_pb_line_break_holder] --> Methylated trivalent arsenicals as candidate ultimate<!-- [et_pb_line_break_holder] --> genotoxic forms of arsenic: induction of chromosomal<!-- [et_pb_line_break_holder] --> mutations but not gene mutations. Environ. Mol.<!-- [et_pb_line_break_holder] --> Mutagen. 42(3): 192-205.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 25. Kochhar T.S., Howard W., Hoffman S., Brammer-Carleton<!-- [et_pb_line_break_holder] --> L. (1996) Effect of trivalent and pentavalent arsenic in<!-- [et_pb_line_break_holder] --> causing chromosome alterations in cultured Chinese<!-- [et_pb_line_break_holder] --> hamster ovary (CHO) cells. Toxicol.Lett. 84(1): 37-42.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 26. Liao W.T., Lin P., Cheng T.S., Yu H.S., Chang L.W. (2007)<!-- [et_pb_line_break_holder] --> Arsenic promotes centrosome abnormalities and cell<!-- [et_pb_line_break_holder] --> colony formation in p53 compromised human lung<!-- [et_pb_line_break_holder] --> cells. Toxicol. Appl.Pharmacol. 225(2): 162-170.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 27. Miller W.H., Schipper H.M., Lee J.S., Singer J., Waxman S.<!-- [et_pb_line_break_holder] --> (2002) Mechanisms of action of arsenic trioxide. Cancer<!-- [et_pb_line_break_holder] --> Res. 62(14): 3893-3903.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 28. Mossman T. (1983) Rapid colorimetric assay for cellular<!-- [et_pb_line_break_holder] --> growth and survival: application to proliferation and<!-- [et_pb_line_break_holder] --> cytotoxicity assays. J. Immunol. Methods 65: 55-63.<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">29. Nakamuro K.,Sayato Y. (1987) Comparative studies of<!-- [et_pb_line_break_holder] --> chromosomal aberration induced by trivalent and<!-- [et_pb_line_break_holder] --> pentavalent arsenic. Mutat. Res. 88(1): 3-80.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 30. Odanaka Y., Matano O., Goto S. (1980) Biomethylation<!-- [et_pb_line_break_holder] --> of inorganic arsenic by the rat and some laboratory<!-- [et_pb_line_break_holder] --> animals. Bull. Environ. Contam. Toxicol. 24(1): 452-<!-- [et_pb_line_break_holder] --> 459.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 31. Osman I.F., Baumgartner A., Cemeli E., Fletcher J.N.,<!-- [et_pb_line_break_holder] --> Anderson D. (2005) Genotoxicity and cytotoxicity<!-- [et_pb_line_break_holder] --> of zinc oxide and titanium dioxide in HEp-2<!-- [et_pb_line_break_holder] --> cells. Nanomedicine 8: 1193-1203.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 32. Oya-Ohta Y., Kaise T., Ochi T. (1996) Induction of<!-- [et_pb_line_break_holder] --> chromosomal aberrations in cultured human fibroblasts<!-- [et_pb_line_break_holder] --> by inorganic and organic arsenic compounds and the<!-- [et_pb_line_break_holder] --> different roles of glutathione in such induction. Mutat.<!-- [et_pb_line_break_holder] --> Res. 357(1-2): 123-129.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 33. Peel A.E., Brice A., Marzin D., Erb F. (1991) Cellular uptake<!-- [et_pb_line_break_holder] --> and biotransformation of arsenic V in transformed<!-- [et_pb_line_break_holder] --> human cell Lines HeLa S 3 and Hep G 2. Toxicol.in<!-- [et_pb_line_break_holder] --> vitro 5(2): 165-168.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 34. Raisuddin S., Jha A.N. (2004) Relative sensitivity of fish<!-- [et_pb_line_break_holder] --> and mammalian cells to sodium arsenate and arsenite<!-- [et_pb_line_break_holder] --> as determined by alkaline single cell gel electrophoresis<!-- [et_pb_line_break_holder] --> and cytokinesi block micronucleus assay. Environ. Mol.<!-- [et_pb_line_break_holder] --> Mutagen. 44(1): 83-89.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 35. Raja W.K., Satti J., Liu G., Castracane J. (2013) Dose<!-- [et_pb_line_break_holder] --> response of MTLn3 cells to serial dilutions of arsenic<!-- [et_pb_line_break_holder] --> trioxide and ionizing radiation. Dose-Response 11(1).</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 36. Rizo W.F., Ferreira L.E., Colnaghi V., Martins J.S.,<!-- [et_pb_line_break_holder] --> Franchi L.P., Takahashi C.S., Fachin A.L. (2013)<!-- [et_pb_line_break_holder] --> Cytotoxicity and genotoxicity of coronaridine<!-- [et_pb_line_break_holder] --> from <em>Tabernaemontanacatharinensis </em>A. DC in a human<!-- [et_pb_line_break_holder] --> laryngeal epithelial carcinoma cell line (Hep-2). Genet.<!-- [et_pb_line_break_holder] --> Mol. Biol. 36 (1): 105-110.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 37. Rossman T.G., Klein C.B. (2011) Genetic and epigenetic<!-- [et_pb_line_break_holder] --> effects of environmental arsenicals. Metallomic 3(11):<!-- [et_pb_line_break_holder] --> 1135-1141.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 38. Rossman T.G., Stone D., Molina M., Troll W. (1980)<!-- [et_pb_line_break_holder] --> Absence of arsenite mutagenicity in <em>E. coli </em>and Chinese<!-- [et_pb_line_break_holder] --> hamster cells. Environ.Mutagen. 2(3): 371-379.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 39. Rudel R., Slayton T.M., Beck B.D. (1996) Implications of<!-- [et_pb_line_break_holder] --> arsenic genotoxicity for dose response of carcinogenic<!-- [et_pb_line_break_holder] --> effects. Regul.Toxicol. Pharm. 23(2): 87-105.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 40. Schuhmacher-Wolz U., Dieter H.H., Klein D., Schneider<!-- [et_pb_line_break_holder] --> K. (2009) Oral exposure to inorganic arsenic: evaluation<!-- [et_pb_line_break_holder] --> of its carcinogenic and non-carcinogenic effects. Crit.<!-- [et_pb_line_break_holder] --> Rev.Toxicol. 39(4): 271-298.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 41. Sciandrello G., Barbaro R., Caradonna F., Barbata G. (2002)<!-- [et_pb_line_break_holder] --> Early induction of genetic instability and apoptosis by<!-- [et_pb_line_break_holder] --> arsenic in cultured Chinese hamster cells. Mutagenesis<!-- [et_pb_line_break_holder] --> 17(2): 99-103.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 42. Summer K.H., Wiebel F.J. (1981) Glutathione and<!-- [et_pb_line_break_holder] --> glutathione S-transferase activities of mammalian cells<!-- [et_pb_line_break_holder] --> in culture. Toxicol.Lett. 9(4): 409-413.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 43. Talorete T.P.N., Bouaziz M., Sayadi S., Isoda H. (2007)<!-- [et_pb_line_break_holder] --> Influence of medium type and serum on MTT<!-- [et_pb_line_break_holder] --> reduction by flavonoids in the absence of cells.<!-- [et_pb_line_break_holder] --> Cytotechnology 52: 189-198.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 44.Thompson D.J. (1993) A chemical hypothesis for arsenic<!-- [et_pb_line_break_holder] --> methylation in mammals.Chemi-Biol. Interact. 88(2):<!-- [et_pb_line_break_holder] --> 89-114.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 45. Tokar E.J., Benbrahim-Tallaa L., Ward J.M., Lunn R., Sans<!-- [et_pb_line_break_holder] --> R.L., Waalkes M.P. (2010) Cancer in experimental<!-- [et_pb_line_break_holder] --> animals exposed to arsenic and arsenic compounds.<!-- [et_pb_line_break_holder] --> Crit. Rev.Toxicol. 40: 912-927.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 46. Tokar E.J., Diwan B.A., Ward J.M., Delker D.A., Waalkes<!-- [et_pb_line_break_holder] --> M.P. (2011) Carcinogenic effect of ‘whole-life’<!-- [et_pb_line_break_holder] --> exposure to inorganic arsenic in CD 1 mice.Toxicol.<!-- [et_pb_line_break_holder] --> Sci<em>.</em>119: 73-83.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 47. Vahter M. (2002) Mechanisms of arsenic<!-- [et_pb_line_break_holder] --> biotransformation. Toxicology 181: 211-217.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 48. Waalkes M.P., Liu J., Diwan B.A. (2007) Transplacental<!-- [et_pb_line_break_holder] --> arsenic carcinogenesis in mice. Toxicol. Appl.<!-- [et_pb_line_break_holder] --> Pharmacol. 222: 271-280.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 49. Westerink W.M., Schirris T.J., Horbach G.J., Schoonen WG.<!-- [et_pb_line_break_holder] --> (2001) Development and validation of a high-content<!-- [et_pb_line_break_holder] --> screening in vitro micronucleus assay in CHO-k1 and<!-- [et_pb_line_break_holder] --> HepG2 cells. Mutat. Res. 724(1-2): 7-21.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 50. Wilkening S., Stahl F., Bade A. (2003) Comparison of<!-- [et_pb_line_break_holder] --> primary human hepatocytes and hepatoma cell<!-- [et_pb_line_break_holder] --> line Hepg2 with regard to their biotransformation<!-- [et_pb_line_break_holder] -->properties. Drug Metab.Dispos. 31(8): 1035-1042.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 51. Yadav K.K., Trivedi S.P. (2009) Sublethal exposure of<!-- [et_pb_line_break_holder] --> heavy metals induces micronuclei in fish, <em>Channa</em><!-- [et_pb_line_break_holder] --> <em>punctate</em>. Chemosphere 77(11): 1495-1500.</font></p><!-- [et_pb_line_break_holder] --></body><!-- [et_pb_line_break_holder] --></html>
Verified by MonsterInsights