Vol. XXIX Issue 1
Communication 6

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><!-- [et_pb_line_break_holder] --><html xmlns="http://www.w3.org/1999/xhtml"><!-- [et_pb_line_break_holder] --><head><!-- [et_pb_line_break_holder] --><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /><!-- [et_pb_line_break_holder] --><title>Untitled Document</title><!-- [et_pb_line_break_holder] --></head><!-- [et_pb_line_break_holder] --><!-- [et_pb_line_break_holder] --><body><!-- [et_pb_line_break_holder] --><p align="right"><font size="3" face="Arial, Helvetica, sans-serif"><strong>ARTÍCULOS ORIGINALES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="4" face="Arial, Helvetica, sans-serif"><strong>Chilean plants cytogenetic database: coverage, features</strong> <!-- [et_pb_line_break_holder] --> <strong>and usages</strong></font></p><!-- [et_pb_line_break_holder] --><p><i><font size="3" face="Arial, Helvetica, sans-serif"><strong>Base de datos citogenéticos de plantas Chilenas:</strong> <strong>cobertura, características y usos</strong></font></i></p><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">Pedro Jara-Seguel<sup>1,2</sup>, Jonathan Urrutia-Estrada<sup>3</sup></font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><sup>1</sup> Departamento de Ciencias Biológicas y Químicas<br /><!-- [et_pb_line_break_holder] --> <sup>2</sup> Núcleo de Estudios Ambientales (NEA), Facultad de Recursos Naturales, <!-- [et_pb_line_break_holder] --> Universidad Católica de Temuco, Rudecindo Ortega 2950, Temuco-Chile<br /><!-- [et_pb_line_break_holder] --> <sup>3</sup> Laboratorio de Invasiones Biológicas, Facultad de Recursos Naturales, <!-- [et_pb_line_break_holder] --> Universidad de Concepción, Casilla 160-C, Concepción-Chile.<br /><!-- [et_pb_line_break_holder] --> * Corresponding author: <a href="mailto:pjara@uct.cl">pjara@uct.cl</a></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Fecha de recepción</b>: 23/01/2017<br /><!-- [et_pb_line_break_holder] --> <b>Fecha de aceptación de versión final</b>: 10/02/2018</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p><b><font size="2" face="Arial, Helvetica, sans-serif">ABSTRACT</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">Chilean Plants Cytogenetic Database (CPCD) is a resource available on line in electronic format, which provides a cytogenetics catalogue <!-- [et_pb_line_break_holder] --> for continental and insular Chilean vascular plants. In this report, we made reference to the CPCD, discussing aspects on its coverage, features and <!-- [et_pb_line_break_holder] --> usages. Currently, the database stores cytogenetic information for 247 species, 107 genera, and 55 families belonging to Pteridophyta, Pinophyta, <!-- [et_pb_line_break_holder] --> and Magnoliophyta.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Key words</b>: Chromosome number; Karyotype; Chilean Plants</font>.</p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>RESUMEN</b></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">La Base de Datos Citogenéticos de Plantas Chilenas (CPCD) es un recurso disponible en formato electrónico en línea, que provee de un <!-- [et_pb_line_break_holder] --> catálogo citogenético para plantas vasculares de Chile continental e insular. En esta comunicación hacemos referencia a la CPCD, discutiendo <!-- [et_pb_line_break_holder] --> aspectos sobre su cobertura, rasgos y usos. Actualmente, la base de datos contiene información citogenética para 247 especies, 107 géneros y 55 <!-- [et_pb_line_break_holder] --> familias pertenecientes a Pteridophyta, Pinophyta y Magnoliophyta.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Palabras clave</b>: Número cromosómico; Cariotipo; Plantas chilenas</font><font size="2">.</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">INTRODUCTION</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"> The electronic databases have taken relevance in biological<!-- [et_pb_line_break_holder] --> investigation from the beginning of the genomic revolution.<!-- [et_pb_line_break_holder] --> The most used databases -the so-called GenBank- are a<!-- [et_pb_line_break_holder] --> tool related to the molecular biology but with multiple<!-- [et_pb_line_break_holder] --> applications in different fields of the biological sciences.<!-- [et_pb_line_break_holder] --> These databases contain public available nucleotide<!-- [et_pb_line_break_holder] --> sequences and protein translation for more than 260,000<!-- [et_pb_line_break_holder] --> species (Benson <em>et al</em>., 2013). Other available databases<!-- [et_pb_line_break_holder] --> most related to cytology store information on genome<!-- [et_pb_line_break_holder] --> size (or DNA C-values) for a high number of Eukaryote<!-- [et_pb_line_break_holder] --> species including plants, animals, fungi, and algae (more<!-- [et_pb_line_break_holder] --> than 10,000 species according to Gregory <em>et al</em>., 2006). In<!-- [et_pb_line_break_holder] --> the specific case of plants, current reports estimate that<!-- [et_pb_line_break_holder] --> the only existing electronic catalogue on genome sizes<!-- [et_pb_line_break_holder] --> comprises data for more than 8,000 species of around<!-- [et_pb_line_break_holder] --> the world (Bennett and Leitch, 2016). Thus, this database<!-- [et_pb_line_break_holder] --> provides a truly comprehensive catalogue on plant<!-- [et_pb_line_break_holder] --> genome size, and represents a much-needed resource for<!-- [et_pb_line_break_holder] --> cytogeneticists, with innumerable applications that have<!-- [et_pb_line_break_holder] --> been broadly discussed in the literature (Bennett and<!-- [et_pb_line_break_holder] --> Leitch, 2005; Leitch <em>et al</em>., 2005; Peruzzi <em>et al</em>., 2009; Roa<!-- [et_pb_line_break_holder] --> and Pires de Campos Telles, 2017).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Regarding on line resources for plant chromosomes,<!-- [et_pb_line_break_holder] --> fourteen cytogenetic databases in electronic format are<!-- [et_pb_line_break_holder] --> available around the world (Peruzzi and Bedini, 2014).<!-- [et_pb_line_break_holder] --> For all of them, data have been obtained from different<!-- [et_pb_line_break_holder] --> bibliographic sources, being chromosome number (2n, n)<!-- [et_pb_line_break_holder] --> the main presented character. Chilean plants have a scarce<!-- [et_pb_line_break_holder] --> representation in most databases, even though many species<!-- [et_pb_line_break_holder] --> have been included during the last decades in the Index<!-- [et_pb_line_break_holder] --> to Plant Chromosome Number (IPCN, Goldblatt and<!-- [et_pb_line_break_holder] --> Johnson, 2006), together with species from other latitudes.<!-- [et_pb_line_break_holder] --> This low representation of Chilean plants in databases<!-- [et_pb_line_break_holder] --> makes it difficult to conduct literature reviews aimed to<!-- [et_pb_line_break_holder] --> explain tendencies on chromosome evolution in a wide<!-- [et_pb_line_break_holder] --> geographic scale, including species from continental and<!-- [et_pb_line_break_holder] --> insular Chile. It is important to remark that continental<!-- [et_pb_line_break_holder] --> Chile is a mosaic of environments along its latitudinal<!-- [et_pb_line_break_holder] --> configuration, having more than 4,000 km in length from<!-- [et_pb_line_break_holder] --> 18° S to 56° S, with marked climatic North to South<!-- [et_pb_line_break_holder] --> gradients. In addition, the longitudinal gradient of Chile<!-- [et_pb_line_break_holder] --> is marked by differences in altitudes (up to 6,000 m.a.s.l.)<!-- [et_pb_line_break_holder] --> which originate a variation of microclimates and, thus,<!-- [et_pb_line_break_holder] --> of environments, many of which are favorable for plant<!-- [et_pb_line_break_holder] --> growth. Of this territory, 55% is covered by vegetation<!-- [et_pb_line_break_holder] --> with 45% of floristic endemism. In addition, insular Chile<!-- [et_pb_line_break_holder] --> is also an interesting mosaic with 320 km2 in surface, and<!-- [et_pb_line_break_holder] --> an endemism that varies between 64% and 87% (Villagrán<!-- [et_pb_line_break_holder] --> and Hinojosa, 2005; CONAF, 2013; Urbina-Casanova <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>., 2015). Therefore, cytogenetic studies on spatial scale<!-- [et_pb_line_break_holder] --> on the Chilean flora are of relevance to analyze tendencies<!-- [et_pb_line_break_holder] --> on genome variation along geographic gradients. The<!-- [et_pb_line_break_holder] --> first review reporting the state of the art on cytogenetic<!-- [et_pb_line_break_holder] --> of Chilean angiosperms emphasized on these matters as<!-- [et_pb_line_break_holder] --> well as on the difficulties encountered to compile the<!-- [et_pb_line_break_holder] --> information, specifically for data documented in the oldest<!-- [et_pb_line_break_holder] --> literature (Jara-Seguel and Urrutia, 2012). At present,<!-- [et_pb_line_break_holder] --> theoretical and/or empirical investigations on different<!-- [et_pb_line_break_holder] --> fields of biology (<em>i.e.</em>, cytogeography, genomics, taxonomy,<!-- [et_pb_line_break_holder] --> evolution, and/or palaeobotany) require the data to be<!-- [et_pb_line_break_holder] --> readily available and compiled from diverse sources. Thus,<!-- [et_pb_line_break_holder] --> at present, databases constitute a valuable resource in which<!-- [et_pb_line_break_holder] --> the information can be easily accessible to the scientific<!-- [et_pb_line_break_holder] --> community (Gregory <em>et al</em>., 2006; Jara-Seguel and Urrutia,<!-- [et_pb_line_break_holder] --> 2012; Roa and Pires de Campos Telles, 2017).<br /><!-- [et_pb_line_break_holder] --> In this communication we make reference to the<!-- [et_pb_line_break_holder] --> Chilean Plants Cytogenetic Database (CPCD, Jara-Seguel<!-- [et_pb_line_break_holder] --> and Urrutia, 2016), and discuss aspects on its coverage,<!-- [et_pb_line_break_holder] --> features and uses.</font></p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">COVERAGE, FEATURES AND USAGES</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">The CPCD provides the first electronic catalogue exclusive<!-- [et_pb_line_break_holder] --> for the Chilean flora, and was launched for the first time<!-- [et_pb_line_break_holder] --> in September 2010, with 101 recorded species. Since then,<!-- [et_pb_line_break_holder] --> two updates were made, the first in March 2011, which<!-- [et_pb_line_break_holder] --> increased the number of species to 163 (release 2.0),<!-- [et_pb_line_break_holder] --> and the second in June 2016, in which this number was<!-- [et_pb_line_break_holder] --> increased to 247 (release 3.0). The latter number of species<!-- [et_pb_line_break_holder] --> represents almost 4.8% of the Chilean Vascular Plants. The<!-- [et_pb_line_break_holder] --> adscription of the species to families and/or genera was<!-- [et_pb_line_break_holder] --> based on the classification given in the original source<!-- [et_pb_line_break_holder] --> cited in the references. The CPCD assembles information<!-- [et_pb_line_break_holder] --> obtained from 88 bibliographic sources covering 55 years<!-- [et_pb_line_break_holder] --> of investigation on the topic. In total, CPCD contains<!-- [et_pb_line_break_holder] --> information for 247 species representing 107 genera<!-- [et_pb_line_break_holder] --> and 55 families belonging to Pteridophyta, Pinophyta,<!-- [et_pb_line_break_holder] --> and Magnoliophyta. As remarkable contribution, the<!-- [et_pb_line_break_holder] --> database includes a wide gamma of cytogenetic characters<!-- [et_pb_line_break_holder] --> [chromosome number, karyotype morphology, banding<!-- [et_pb_line_break_holder] --> patterns (C, Ag-NOR, CMA3 and DAPI), nuclear DNA<!-- [et_pb_line_break_holder] --> content (C-value) and/or fluorescent <em>in situ </em>hybridization<!-- [et_pb_line_break_holder] --> (rDNA 5S, 18S, 28S)], which is advantageous regarding<!-- [et_pb_line_break_holder] --> other databases focused only on chromosome numbers or<!-- [et_pb_line_break_holder] --> rDNA chromosome location. Moreover, all bibliographic<!-- [et_pb_line_break_holder] --> references are appended to the cytogenetic data of each<!-- [et_pb_line_break_holder] --> species. Several statistical details on the database coverage<!-- [et_pb_line_break_holder] --> are summarized in <a href="#tab1">Table 1</a>.<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><a name="tab1" id="tab1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b>Table 1</b>. Cytogenetic data for each plant division recorded in the Chilean Plants Cytogenetic Database (CPCD)<!-- [et_pb_line_break_holder] --> and the current percentage of species representation in the database regarding to the total Chilean<!-- [et_pb_line_break_holder] -->vascular flora.<br /><!-- [et_pb_line_break_holder] --></font><font size="2" face="Arial, Helvetica, sans-serif"><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/XXIX1a06tab1.jpg" width="555" height="159" /><br /><!-- [et_pb_line_break_holder] --><sup>(1)</sup> Based in Rodríguez (1995).<br /><!-- [et_pb_line_break_holder] --><sup>(2)</sup> Based in Marticorena (1990).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">The cytogenetic data comprised in the CPCD increases<!-- [et_pb_line_break_holder] --> the potential applications of the accumulated knowledge<!-- [et_pb_line_break_holder] --> on genome structure and diversity of Chilean native<!-- [et_pb_line_break_holder] --> plants, focused on relevant cytogenetic characters. In<!-- [et_pb_line_break_holder] --> general, it is remarkable that the higher number of species<!-- [et_pb_line_break_holder] --> included in the database (196 continental species) are<!-- [et_pb_line_break_holder] --> representative of discontinuous latitudinal strips localized<!-- [et_pb_line_break_holder] --> between 18° S and 53° S, and most of them (192 species)<!-- [et_pb_line_break_holder] --> are found within the Chilean Hotspots (Myers <em>et al</em>., 2000).<!-- [et_pb_line_break_holder] --> Nevertheless, cytogenetic data of species that inhabit in<!-- [et_pb_line_break_holder] --> the Juan Fernández Archipelago and Isla de Pascua are also<!-- [et_pb_line_break_holder] --> included (51 insular species).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> The database is a comprehensive, ordered, easily<!-- [et_pb_line_break_holder] --> accessible and useful catalogue for experimented and<!-- [et_pb_line_break_holder] --> incipient cytogeneticist interested in cytogenetic aspects of<!-- [et_pb_line_break_holder] --> Chilean plants or for comparative investigations with cofamilial<!-- [et_pb_line_break_holder] --> members that inhabit other geographic regions.<!-- [et_pb_line_break_holder] --> The database is of free access, and the traffic has increased<!-- [et_pb_line_break_holder] --> steadily since its launching in September 2010, with more<!-- [et_pb_line_break_holder] --> than 7,400 visitors belonging to 46 countries of around the<!-- [et_pb_line_break_holder] --> world. From the time of launching and on, the database has<!-- [et_pb_line_break_holder] --> been cited in seven publications, some of them analyzing<!-- [et_pb_line_break_holder] --> tendencies on chromosome number variation of global or<!-- [et_pb_line_break_holder] --> local floras (Jara-Seguel and Urrutia, 2012; Peruzzi <em>et al</em>.,<!-- [et_pb_line_break_holder] --> 2012; Rice <em>et al</em>., 2015), and others discussing the usefulness<!-- [et_pb_line_break_holder] --> of databases assembling data on plant rDNA chromosome<!-- [et_pb_line_break_holder] --> localization or genome size (García <em>et al</em>., 2012; Dagher-<!-- [et_pb_line_break_holder] --> Kharrat <em>et al</em>., 2013). Recently, CPCD has been included<!-- [et_pb_line_break_holder] --> in the largest community resource of plants chromosome<!-- [et_pb_line_break_holder] --> numbers at the worldwide level (see CCDB, Rice <em>et al</em>.,<!-- [et_pb_line_break_holder] --> 2015), which may increase its visibility and use. It is also<!-- [et_pb_line_break_holder] --> listed as an on line resource for chromosome numbers<!-- [et_pb_line_break_holder] --> among other 17 databases available around the world<!-- [et_pb_line_break_holder] --> (Peruzzi and Bedini, 2014). In fact, the data on Chilean<!-- [et_pb_line_break_holder] --> plants pooled in the CPCD not only have been used to<!-- [et_pb_line_break_holder] --> analyze tendencies, but have also served as substrate to<!-- [et_pb_line_break_holder] --> propose new quantitative methods to analyze large data<!-- [et_pb_line_break_holder] --> sets of chromosome numbers of animals and plants (see<!-- [et_pb_line_break_holder] --> Peruzzi <em>et al</em>., 2014). Thus, the CPCD is a valuable tool for<!-- [et_pb_line_break_holder] --> generating knowledge in different cytogenetic fields.</font></p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">FUTURE PROSPECTS</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">The CPCD could be annually or biannually updated, as<!-- [et_pb_line_break_holder] --> new cytogenetic information may published or obtained<!-- [et_pb_line_break_holder] --> from old sources. However, for continuously being an<!-- [et_pb_line_break_holder] --> important source of information for cytogeneticists and/<!-- [et_pb_line_break_holder] --> or taxonomists, it is necessary to increase the number of<!-- [et_pb_line_break_holder] --> cytogenetic studies in all taxonomic divisions that represent<!-- [et_pb_line_break_holder] --> the Chilean plant biodiversity.</font></p><!-- [et_pb_line_break_holder] --><p><b><font size="2" face="Arial, Helvetica, sans-serif">ACKNOWLEDGEMENTS</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">To Núcleo de Estudios Ambientales (NEA), Universidad<!-- [et_pb_line_break_holder] --> Católica de Temuco, for funding the current implementation<!-- [et_pb_line_break_holder] --> of the Chilean Plants Cytogenetic Database (CPCD). Our<!-- [et_pb_line_break_holder] --> gratefulness to the authors cited in the database for their<!-- [et_pb_line_break_holder] -->valuable contribution to the knowledgeof the Chilean flora. </font></p><!-- [et_pb_line_break_holder] --><p><b><font size="2" face="Arial, Helvetica, sans-serif">BIBLIOGRAPHY</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 1. Bennett M., Leitch I. (2005) Plant genome size research: A<!-- [et_pb_line_break_holder] --> field in focus. Ann. Bot. 95 (1): 1-6.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 2. Bennett M., Leitch I. (2016) Plant DNA C-values database.<!-- [et_pb_line_break_holder] --> URL: <a href="http://data.kew.org/cvalues/" target="_blank">http://data.kew.org/cvalues/</a> (Viewed: January<!-- [et_pb_line_break_holder] --> 08, 2018).</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 3. Benson D., Cavanaugh M., Clark K., Karsch-Mizrachi<!-- [et_pb_line_break_holder] --> I., Lipman D., Ostell J., Sayers E. (2013) GenBank.<!-- [et_pb_line_break_holder] --> Nucleic Acids Res. 42: 36-42.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 4. Conaf (2013) Por un Chile forestal sustentable. Corporación<!-- [et_pb_line_break_holder] --> Nacional Forestal, Santiago, Chile.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 5. Dagher-Kharrat M., Abdel-Samad N., Douaihy B., Bourge<!-- [et_pb_line_break_holder] --> M., Firdlender A., Siljak-Yakovlev S., Brown S. (2013)<!-- [et_pb_line_break_holder] --> Nuclear DNA C-values for biodiversity screening:<!-- [et_pb_line_break_holder] --> Case of the Lebanese flora. Plant Biosyst. 147 (4):<!-- [et_pb_line_break_holder] --> 1128-1237.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 6. Garcia S., Garnatje T., Kovarík A. (2012) Plant rDNA<!-- [et_pb_line_break_holder] --> database: ribosomal DNA loci information goes online.<!-- [et_pb_line_break_holder] --> Chromosoma 121 (4): 389-394.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 7. Goldblatt P., Johnson D. (2006) Index to Plant Chromosome<!-- [et_pb_line_break_holder] --> Numbers 2001-2003. Syst. Bot. 106: 1-242.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 8. Gregory R., Nicol J., Tamm H., Kullman B., Kullman<!-- [et_pb_line_break_holder] --> K., Leitch I., Murray B., Kapraun D., Greilhuber J.,<!-- [et_pb_line_break_holder] --> Bennett M. (2006) Eukaryotic genome size databases.<!-- [et_pb_line_break_holder] --> Nucleic Acids Res. 35: 332-338.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 9. Jara-Seguel P., Urrutia J. (2012) Cytogenetics of Chilean<!-- [et_pb_line_break_holder] --> Angiosperms: Advances and prospects. Rev. Chil. Hist.<!-- [et_pb_line_break_holder] --> Nat. 85: 1-12.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 10. Jara-Seguel P., Urrutia J. (2016) Chilean Plants Cytogenetic<!-- [et_pb_line_break_holder] --> Database. URL: <a href="http://www.chileanpcd.com/" target="_blank">http://www.chileanpcd.com/</a>.<!-- [et_pb_line_break_holder] --> (Viewed: January 15, 2018).</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 11. Leitch I., Soltis D., Soltis P., Bennett M. (2005) Evolution<!-- [et_pb_line_break_holder] --> of DNA amounts across Land Plants (Embryophyta).<!-- [et_pb_line_break_holder] --> Ann. Bot. 95: 207-217.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 12. Marticorena C. (1990) Contribución a la estadística de la<!-- [et_pb_line_break_holder] --> flora vascular de Chile. Gayana Bot. 47 (3-4): 85-113.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 13. Myers N., Mittermeier R., Mittermeier C., Fonseca G.,<!-- [et_pb_line_break_holder] --> Kent J. (2000) Biodiversity hotspots for conservation<!-- [et_pb_line_break_holder] --> priorities. Nature 403: 853-858.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 14. Peruzzi, L., Bedini, G. (2014) Online resources for<!-- [et_pb_line_break_holder] --> chromosome number databases. Caryologia 67(4):<!-- [et_pb_line_break_holder] --> 292-295.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 15. Peruzzi L., Caparelli K., Bedini G. (2014) A new index for<!-- [et_pb_line_break_holder] --> the quantification of chromosome number variation:<!-- [et_pb_line_break_holder] --> An application to selected animal and plant groups. J.<!-- [et_pb_line_break_holder] --> Theor. Biol. 353: 55-60.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 16. Peruzzi L., Góralski G., Joachimiak A., Bedini G. (2012)<!-- [et_pb_line_break_holder] --> Does actually mean chromosome number increase<!-- [et_pb_line_break_holder] --> with latitude in vascular plants? An answer from the<!-- [et_pb_line_break_holder] --> comparison of Italian, Slovak and Polish floras. Comp.<!-- [et_pb_line_break_holder] --> Cytogen. 6 (4): 371-377.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 17. Peruzzi L., Leitch I., Caparelli K. (2009) Chromosome<!-- [et_pb_line_break_holder] --> diversity and evolution in Liliaceae. Ann. Bot. 103:<!-- [et_pb_line_break_holder] --> 459-475.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 18. Rice A., Glic L., Abadi S., Einhorn M., Kopelman N.,<!-- [et_pb_line_break_holder] --> Salman-Minkov A., Mayzel J., Chay O., Mayrose I.<!-- [et_pb_line_break_holder] --> (2015) The Chromosome Counts Database (CCDB) –<!-- [et_pb_line_break_holder] --> a community resource of plant chromosome numbers.<!-- [et_pb_line_break_holder] --> New Phytol. 206: 19-26.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 19. Roa F., Pires de Campos Telles M. (2017) The Cerrado<!-- [et_pb_line_break_holder] --> (Brazil) plant cytogenetics database. Comp. Cytogen.<!-- [et_pb_line_break_holder] --> 11 (2): 285-297.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 20. Rodríguez R. (1995) Pteridophyta. In: Marticorena<!-- [et_pb_line_break_holder] --> C., Rodríguez R. (Eds.) Flora de Chile. Ediciones<!-- [et_pb_line_break_holder] --> Universidad de Concepción, Concepción, Chile, pp.<!-- [et_pb_line_break_holder] --> 119-350.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 21. Urbina-Casanova R., Saldivia P., Scherson R. (2015)<!-- [et_pb_line_break_holder] --> Consideraciones sobre la sistemática de las familias y<!-- [et_pb_line_break_holder] --> los géneros de plantas vasculares endémicos de Chile.<!-- [et_pb_line_break_holder] --> Gayana Bot. 72 (2): 272-295.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">22. Villagrán C., Hinojosa L. (2005) Esquema biogeográfico<!-- [et_pb_line_break_holder] --> de Chile. In: Llorente-Bousquets J., Morrone J. (Eds.)<!-- [et_pb_line_break_holder] --> Regionalización biogeográfica en Iberoamérica y<!-- [et_pb_line_break_holder] --> tópicos afines. Ediciones de la Universidad Nacional<!-- [et_pb_line_break_holder] -->Autónoma de México, México, pp. 551-577.</font></p><!-- [et_pb_line_break_holder] --></body><!-- [et_pb_line_break_holder] --></html>
Verified by MonsterInsights