Vol. XXVIII Issue 2
Article 4
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><!-- [et_pb_line_break_holder] --><html xmlns="http://www.w3.org/1999/xhtml"><!-- [et_pb_line_break_holder] --><head><!-- [et_pb_line_break_holder] --><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /><!-- [et_pb_line_break_holder] --><title>Untitled Document</title><!-- [et_pb_line_break_holder] --></head><!-- [et_pb_line_break_holder] --><!-- [et_pb_line_break_holder] --><body><!-- [et_pb_line_break_holder] --><p align="right"><font size="3" face="Arial, Helvetica, sans-serif"><strong>ARTÍCULOS ORIGINALES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="4" face="Arial, Helvetica, sans-serif"><strong>Migrations, admixture and genetic diversity in Central</strong> <!-- [et_pb_line_break_holder] --> <strong>Argentinian Patagonia: analysis of autosomal Alu</strong> <!-- [et_pb_line_break_holder] --> <strong>polymorphisms</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong><i>Migraciones, mestizaje y diversidad genética en la Patagonia</i></strong> <!-- [et_pb_line_break_holder] --> <i><strong>Central Argentina: análisis de polimorfismos autosómicos Alu</strong></i><strong></strong></font></p><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">Parolin M.L.<SUP>1*</sup>, Zanetti D.<SUP>2</sup>, Calò C.M.<SUP>3</sup>, Esteban E.<SUP>2</sup>, Avena S.<SUP>4</sup>, Carnese F.R.<SUP>4</sup>, Moral P.<SUP>2</sup></font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><SUP>1</sup> Instituto de Diversidad y Evolución Austral, CCT CENPAT-CONICET, Puerto Madryn, Argentina.<br /><!-- [et_pb_line_break_holder] --> <SUP>2</sup> Departament Biologia Animal, Unitat d’Antropologia, Facultat de Biologia, Universitat de Barcelona, Spain.<br /><!-- [et_pb_line_break_holder] --> <SUP>3</sup> Dipartimento di Scienze della vita e dell’ ambiente, Università de Cagliari, Sardegna Italia.<br /><!-- [et_pb_line_break_holder] --> <SUP>4</sup> Universidad Maimónides e Instituto de Ciencias Antropológicas, Facultad de Filosofía y Letras, Universidad de Buenos Aires, Argentina.<br /><!-- [et_pb_line_break_holder] --> * corresponding author: <a href="mailto:parolin@cenpat-conicet.gob.ar">parolin@cenpat-conicet.gob.ar</a></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Fecha de recepción</b>: 20/02/2017<br /><!-- [et_pb_line_break_holder] --> <b>Fecha de aceptación de versión final</b>: 25/10/2017</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>ABSTRACT</b></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">This study aimed to analyze autosomal Alu insertions in three localities from Patagonia Argentina belonging to the Andes region and the<!-- [et_pb_line_break_holder] --> coast of the Chubut province. Knowledge of the genetic diversity of these populations, along with the genealogical data, will contribute to better<!-- [et_pb_line_break_holder] --> understand historical information, differential migration process and bio-demographic composition of the Central Patagonia region. In order to<!-- [et_pb_line_break_holder] --> achieve this objective, 16 autosomal Alu insertion polymorphisms were genotyped: ACE, APO-A1, TPA25, FXIIIB, A25, HS4.32, D1, HS4.69,<!-- [et_pb_line_break_holder] --> HS2.43, Sb19.12, Yb8NBC120, Sb19.3, Yb8NBC125, Ya5NBC221, DM, and CD4. Our results showed that the Central Patagonia region presents<!-- [et_pb_line_break_holder] --> a complex continental genetic admixture with marked Native American roots (39% ± 1.2), Eurasian (56% ± 1.73) and, to a lesser extent, African<!-- [et_pb_line_break_holder] --> (5% ± 1.7). The genetic proximity of the Patagonian samples in relation to groups from Europe and Northern Africa, but with a displacement<!-- [et_pb_line_break_holder] --> towards the native communities, constitutes a clear indicator of the differential admixture process that took place in different regions of Argentina.<!-- [et_pb_line_break_holder] --> Moreover, genetic differences were observed between Patagonian localities and Bahía Blanca (Central region of Argentina). These observations<!-- [et_pb_line_break_holder] --> warned us that population genetic constitution analysis cannot be approached without bearing in mind the regional particularities, which are the<!-- [et_pb_line_break_holder] --> result of the different historical, migratory, social-economic and demographic processes that occurs in the country.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Key words</b>: Alu insertion polymorphisms; Argentina Central Patagonia; Admixture; Migrations</font>.</p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>RESUMEN</b></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">Este estudio tiene como objetivo el análisis de las inserciones autosómicas Alu en tres localidades de la Patagonia argentina localizadas en la<!-- [et_pb_line_break_holder] --> región andina y costera de la provincia de Chubut. El conocimiento de la diversidad genética de estas poblaciones, junto con los datos genealógicos,<!-- [et_pb_line_break_holder] --> contribuirán a una mejor comprensión de la información histórica, los procesos migratorios diferenciales y la composición bio-demográfica de la<!-- [et_pb_line_break_holder] --> región central Patagónica. Para alcanzar este objetivo se analizaron 16 polimorfismos autosómicos de inserción Alu: ACE, APO-A1, TPA25, FXIIIB,<!-- [et_pb_line_break_holder] --> A25, HS4.32, D1, HS4.69, HS2.43, Sb19.12, Yb8NBC120, Sb19.3, Yb8NBC125, Ya5NBC221, DM y CD4. Nuestros resultados mostraron que la<!-- [et_pb_line_break_holder] --> región central Patagónica presenta una mezcla genética continental compleja de marcadas raíces nativo americanas 39% (± 1.2), eurasiáticas 56% (±<!-- [et_pb_line_break_holder] --> 1.73) y, en menor medida, africanas 5% (± 1.7). La proximidad genética de las muestras patagónicas a los grupos de Europa y del Norte de África, pero<!-- [et_pb_line_break_holder] --> con un mayor desplazamiento hacia las comunidades nativas, constituye un claro indicador del proceso de mezcla diferencial que tuvo lugar en las<!-- [et_pb_line_break_holder] --> distintas regiones de la Argentina. Por otra parte, las diferencias genéticas observadas entre las localidades de Patagonia y Bahía Blanca (región central de<!-- [et_pb_line_break_holder] --> la Argentina), nos advierten que no puede analizarse la constitución genética de las poblaciones sin tener en cuenta las particularidades regionales, que<!-- [et_pb_line_break_holder] --> son el resultado de los diferentes procesos históricos, migratorios, socio-económicos y demográficos que ocurrieron en el interior del país.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Palabras clave</b>: Polimorfismos de inserción Alu; Patagonia Central Argentina; Mestizaje; Migraciones</font>.</p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><b>INTRODUCTION</b></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Argentina has a history of widespread admixture among<!-- [et_pb_line_break_holder] --> Native American, Eurasian and African groups, with<!-- [et_pb_line_break_holder] --> particular characteristics in each region of the country<!-- [et_pb_line_break_holder] --> (Toscanini <em>et al.</em>, 2007; Avena <em>et al.</em>, 2012; Parolin <em>et al.</em>,<!-- [et_pb_line_break_holder] --> 2013a, 2015a; García <em>et al.</em>, 2015). Knowledge of the genetic<!-- [et_pb_line_break_holder] --> composition of urban populations allows the reconstruction<!-- [et_pb_line_break_holder] --> of the biological identity of their inhabitants, both at local<!-- [et_pb_line_break_holder] --> and regional levels. At the same time, this information can<!-- [et_pb_line_break_holder] --> be useful to understand the admixture events associated<!-- [et_pb_line_break_holder] --> with different foundational histories, migrations and<!-- [et_pb_line_break_holder] --> demographic changes that characterized the populations<!-- [et_pb_line_break_holder] --> under study.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Previous studies carried out in the Central Patagonia<!-- [et_pb_line_break_holder] --> region by means of blood systems analysis, showed<!-- [et_pb_line_break_holder] --> an Eurasian contribution of 51%, a Native American<!-- [et_pb_line_break_holder] --> contribution of 47%, and an African contribution of 2% in<!-- [et_pb_line_break_holder] --> the Andean locality of Esquel (ESQ) (Avena <em>et al.</em>, 2010).<!-- [et_pb_line_break_holder] --> The corresponding ancestral contributions were 59%, 37%<!-- [et_pb_line_break_holder] --> and 4% respectively in Comodoro Rivadavia (CR) (Avena<!-- [et_pb_line_break_holder] --> <em>et al.</em>, 2009) and 67%, 29% and 4% in Puerto Madryn (PM)<!-- [et_pb_line_break_holder] --> (Parolin <em>et al.</em>, 2013b). More recently, by means of the analysis<!-- [et_pb_line_break_holder] --> of 99 ancestry informative autosomal markers (AIMs) in a<!-- [et_pb_line_break_holder] --> combination of samples from ESQ and CR, the above<!-- [et_pb_line_break_holder] --> genetic composition was estimated to be 52% Eurasian,<!-- [et_pb_line_break_holder] --> 44% Native American, and 4% African (Avena <em>et al.</em>, 2012).<!-- [et_pb_line_break_holder] --> Likewise, through the study of 22 STR autosomal markers<!-- [et_pb_line_break_holder] --> in samples from filiation cases from Chubut province,<!-- [et_pb_line_break_holder] --> ancestral contributions were estimated as 50% European,<!-- [et_pb_line_break_holder] --> 46% Native American and 4% African (Parolin <em>et al.</em>, 2015b).<!-- [et_pb_line_break_holder] --> Uniparental genetic data obtained in Central Patagonia<!-- [et_pb_line_break_holder] --> (Avena <em>et al.</em>, 2009, 2010; Parolin <em>et al.</em>, 2013b, 2014), supports<!-- [et_pb_line_break_holder] --> the idea that in Argentina the native maternal participation<!-- [et_pb_line_break_holder] --> rises towards the North (83-94%) and South of the country,<!-- [et_pb_line_break_holder] --> including Patagonia (53-78%), and decreases to an average<!-- [et_pb_line_break_holder] --> of 45% in the Central region. Meanwhile, the native<!-- [et_pb_line_break_holder] --> paternal contribution is observed at a mean of 6% in every<!-- [et_pb_line_break_holder] --> urban population studied by our research team, except for<!-- [et_pb_line_break_holder] --> Northwest Argentina (NWA), with 17.3% (Di Fabio Roca<!-- [et_pb_line_break_holder] --> <em>et al.</em>, 2016) and the Andean localities of ESQ, with 23%<!-- [et_pb_line_break_holder] --> (Parolin <em>et al.</em>, 2013a), and San Carlos de Bariloche (SCB),<!-- [et_pb_line_break_holder] --> with 18% (Parolin <em>et al.</em>, 2015a). Other authors have observed<!-- [et_pb_line_break_holder] --> this same trend upon studying urban and rural areas from the<!-- [et_pb_line_break_holder] --> center and North of Argentina (Martínez Marignac <em>et al.</em>,<!-- [et_pb_line_break_holder] --> 2004; Wang <em>et al.</em>, 2008; García and Demarchi, 2009; Bailliet<!-- [et_pb_line_break_holder] --> <em>et al.</em>, 2011; Motti <em>et al.</em>, 2013).<!-- [et_pb_line_break_holder] --> There is also a strong correlation between genetic data<!-- [et_pb_line_break_holder] --> and the donors´ genealogical information, and between<!-- [et_pb_line_break_holder] --> genetic data and the historical and demographic data<!-- [et_pb_line_break_holder] --> of each locality. In this regard, it has been observed that<!-- [et_pb_line_break_holder] --> genetic contribution of foreign migrants (mainly from<!-- [et_pb_line_break_holder] --> bordering countries) to the relatively small receptive<!-- [et_pb_line_break_holder] --> populations, increases towards the South of the country.<!-- [et_pb_line_break_holder] --> At local level, ESQ presents the largest proportion of<!-- [et_pb_line_break_holder] --> grandparents and donors born in the same city and its<!-- [et_pb_line_break_holder] --> area of influence, whereas TW and PM exhibit a larger<!-- [et_pb_line_break_holder] --> number of internal migrants from other Argentinean<!-- [et_pb_line_break_holder] --> regions, mainly from the center of the country, with<!-- [et_pb_line_break_holder] --> largerEuropean ancestry (Parolin <em>et al.</em>, 2013b). However,<!-- [et_pb_line_break_holder] --> we point out the existence of an important Bolivian<!-- [et_pb_line_break_holder] --> community inhabiting the lower valley of the Chubut<!-- [et_pb_line_break_holder] --> River region (Rossini <em>et al.</em>, 2007). In addition, TW, CR<!-- [et_pb_line_break_holder] --> and SCB present a strong influence of migrations from<!-- [et_pb_line_break_holder] --> bordering countries, particularly of Chilean origin, with<!-- [et_pb_line_break_holder] --> strong Native American ancestry (Bandieri, 2001; INDEC:<!-- [et_pb_line_break_holder] --> Censo Nacional de Población, Hogares y Viviendas 2010-<!-- [et_pb_line_break_holder] --> http//indec.mecon.ar). Moreover, CR is the Patagonian<!-- [et_pb_line_break_holder] --> city with the highest migratory flow from NWA, attracted<!-- [et_pb_line_break_holder] --> by the large oil industry that characterizes the city. These<!-- [et_pb_line_break_holder] --> differences observed from previous studies carried out<!-- [et_pb_line_break_holder] --> in the interior of the same region and even in the same<!-- [et_pb_line_break_holder] --> province, as it is the case of Chubut, cautioned us about<!-- [et_pb_line_break_holder] --> the fact that the analysis of the genetic composition of the<!-- [et_pb_line_break_holder] --> populations must take into consideration particularities of<!-- [et_pb_line_break_holder] --> local and regional historical migrations.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Alu polymorphisms are repetitive DNA insertions of<!-- [et_pb_line_break_holder] --> 300-1,000 bp which are spread along the human genome<!-- [et_pb_line_break_holder] --> and constitute approximately 5% out of its total sequence.<!-- [et_pb_line_break_holder] --> Their origin is estimated at around 65 million years BP<!-- [et_pb_line_break_holder] --> and they are found exclusively in primates. These markers<!-- [et_pb_line_break_holder] --> are especially useful in evolutionary studies because of a<!-- [et_pb_line_break_holder] --> number of characteristics that they share: high stability,<!-- [et_pb_line_break_holder] --> neutrality, known ancestral state and low propensity<!-- [et_pb_line_break_holder] --> to exhibit homoplasy (Batzer and Deininger, 2002;<!-- [et_pb_line_break_holder] --> Rishishwar <em>et al.</em>, 2015). These properties make the analysis<!-- [et_pb_line_break_holder] --> of Alu insertions a tool of great utility for the analysis of<!-- [et_pb_line_break_holder] --> biological relations among populations, reconstruction of<!-- [et_pb_line_break_holder] --> historical processes, and population structures. Moreover,<!-- [et_pb_line_break_holder] --> they have been successfully used as ancestry markers to<!-- [et_pb_line_break_holder] --> estimate the geographic descent of the human populations<!-- [et_pb_line_break_holder] --> (Luizon <em>et al.</em>, 2007).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Alu markers have been used to study Eurasian and<!-- [et_pb_line_break_holder] --> African populations (Calò <em>et al.</em>, 2005; González-Pérez <em>et</em><!-- [et_pb_line_break_holder] --> <em>al.</em>, 2003, 2010; Hernando Herráez, 2010; Zanetti <em>et al.</em>,<!-- [et_pb_line_break_holder] --> 2014) and, in a lesser extent, Native American groups<!-- [et_pb_line_break_holder] --> (Battilana <em>et al.</em>, 2002, 2006; Dornelles <em>et al.</em>, 2004; Mateus-<!-- [et_pb_line_break_holder] --> Pereira <em>et al.</em>, 2005; Gayà-Vidal <em>et al.</em>, 2010; Gómez-Pérez <em>et</em><!-- [et_pb_line_break_holder] --> <em>al.</em>, 2013). However, there are only three studies that make<!-- [et_pb_line_break_holder] --> use of the Alu insertions as a tool for genetic-population<!-- [et_pb_line_break_holder] --> analysis in Argentina: Martínez Marignac <em>et al. </em>(2004)<!-- [et_pb_line_break_holder] --> analyzed two Alu markes and three autosomal SNPs to<!-- [et_pb_line_break_holder] --> estimate continental admixture (European, African and<!-- [et_pb_line_break_holder] --> native American ancestry) in a sample of La Plata city<!-- [et_pb_line_break_holder] --> (Buenos Aires province), Resano <em>et al. </em>(2007) analyzed 19<!-- [et_pb_line_break_holder] --> Alu markers to estimate admixture fractions in a sample<!-- [et_pb_line_break_holder] --> from Bahía Blanca city (Buenos Aires province), and<!-- [et_pb_line_break_holder] --> Gómez-Pérez <em>et al. </em>(2011) analyzed eight autosomal Alu<!-- [et_pb_line_break_holder] --> markers to characterize genetic diversity and population<!-- [et_pb_line_break_holder] --> structure of the Jujuy province.<!-- [et_pb_line_break_holder] --> Motivated by the demonstrated utility of the Alu<!-- [et_pb_line_break_holder] --> insertions in population genetic studies, we analyzed<!-- [et_pb_line_break_holder] --> 16 autosomal Alu insertion polymorphisms (ACE,<!-- [et_pb_line_break_holder] --> APO-A1, TPA25, FXIIIB, A25, HS4.32, D1, HS4.69,<!-- [et_pb_line_break_holder] --> HS2.43, Sb19.12, Yb8NBC120, Sb19.3, Yb8NBC125,<!-- [et_pb_line_break_holder] --> Ya5NBC221, DM, and CD4) in three localities of Chubut<!-- [et_pb_line_break_holder] --> province, Central Patagonia: one in the Andes region<!-- [et_pb_line_break_holder] --> (Esquel) and the other two in the coast (Comodoro<!-- [et_pb_line_break_holder] --> Rivadavia and Puerto Madryn).<!-- [et_pb_line_break_holder] --> Knowledge of the genetic composition of these<!-- [et_pb_line_break_holder] --> populations will contribute to understand differential<!-- [et_pb_line_break_holder] --> migration and admixture processes in different region of<!-- [et_pb_line_break_holder] --> Argentina. At the same time, the knowledge of the genetic<!-- [et_pb_line_break_holder] --> structure of a particular population could be a useful tool<!-- [et_pb_line_break_holder] --> in biomedical research and forensic sciences.</font></p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">MATERIALS AND METHODS</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>The populations</em><!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> DNA of 150 non-related individuals from the cities of<!-- [et_pb_line_break_holder] -->Esquel (ESQ; N= 50), Comodoro Rivadavia (CR; N=<!-- [et_pb_line_break_holder] -->50) and Puerto Madryn (PM; N= 50) were analyzed.<!-- [et_pb_line_break_holder] -->ESQ is situated in the Andes region, whereas the other<!-- [et_pb_line_break_holder] -->two cities are in the coastal area of the Chubut province,<!-- [et_pb_line_break_holder] -->Central Patagonia, Argentina (<a href="#fig1">Figure 1</a>). Blood samples<!-- [et_pb_line_break_holder] -->were taken, with prior signed informed consent, from<!-- [et_pb_line_break_holder] -->volunteer donors who attended the hemotherapy services<!-- [et_pb_line_break_holder] -->at public and private hospitals in each locality and signed a<!-- [et_pb_line_break_holder] -->prior informed consent. The participants were thoroughly<!-- [et_pb_line_break_holder] -->informed of the scopes of the study and answered a<!-- [et_pb_line_break_holder] -->questionnaire to obtain information about their birthplace<!-- [et_pb_line_break_holder] -->and that of the two preceding generations (parents and<!-- [et_pb_line_break_holder] -->grandparents). Five ml of whole blood were obtained from<!-- [et_pb_line_break_holder] -->each donor and collected in vacutainer tubes with EDTA<!-- [et_pb_line_break_holder] -->anticoagulant (Ethylene Diamine Tetra Acetic Acid).<!-- [et_pb_line_break_holder] -->DNA was extracted by the phenol-chloroform method<!-- [et_pb_line_break_holder] -->(Sambrook <em>et al.</em>, 1989). The protocols and procedures<!-- [et_pb_line_break_holder] --> employed in this study were reviewed and approved by<!-- [et_pb_line_break_holder] --> bioethics and educational committees of the Regional<!-- [et_pb_line_break_holder] --> Hospital of CR, Sub-zonal Hospital of ESQ, and Zonal<!-- [et_pb_line_break_holder] --> Hospital of PM.</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig1" id="fig1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a04fig1.jpg" width="290" height="368" /><br /><!-- [et_pb_line_break_holder] -->Figure 1</b>. Geographical location of the studied populations.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>Genotyping</em><!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Sixteen Alu insertion polymorphisms (FXIII, HS2.43, D1,<!-- [et_pb_line_break_holder] -->HS4.69, A25, TPA25, APOA1, CD4, HS4.32, ACE, Sb19.3,<!-- [et_pb_line_break_holder] -->Sb19.12, DM, Yb8NBC120, YbNBC125 and Ya5NBC221),<!-- [et_pb_line_break_holder] -->distributed in nine autosomal chromosomes (Nº 1, 3, 6, 8,<!-- [et_pb_line_break_holder] --> 11, 12, 17, 19, 22; <a href="#tab1">Table 1</a>), were genotyped. Genotypes<!-- [et_pb_line_break_holder] --> were scored by PCR amplification and subsequent<!-- [et_pb_line_break_holder] --> electrophoretic migration in agarose gels. Primer sequences<!-- [et_pb_line_break_holder] --> and amplification conditions were as previously described<!-- [et_pb_line_break_holder] --> (Batzer and Deininger, 1991; Stoneking <em>et al.</em>, 1997;<!-- [et_pb_line_break_holder] --> González-Pérez <em>et al.</em>, 2010). Each PCR reaction included<!-- [et_pb_line_break_holder] --> positive and negative amplification controls. Genotype<!-- [et_pb_line_break_holder] --> assignments were made by direct observation of 2% agarose<!-- [et_pb_line_break_holder] --> gels (CD4, DM and FXIIIB, at 1%) dyed with GelRed 0.5x<!-- [et_pb_line_break_holder] --> under UV light.</font></p><!-- [et_pb_line_break_holder] --><p><a name="tab1" id="tab1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b>Table 1</b>. Amplification characteristics of Alu polymorphisms.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> <img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a04tab1.jpg" width="573" height="568" /><br /><!-- [et_pb_line_break_holder] --> Ta: Annealing temperature; Chr: chromosome location; PCR product size of Alu-containing/Alu-lacking allele; pb: pairs of bases.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>Statistical Analysis</em><br /><!-- [et_pb_line_break_holder] --> Analysis of allelic frequencies, heterozygosity indexes, Hardy-<!-- [et_pb_line_break_holder] --> Weinberg equilibrium, differences between population<!-- [et_pb_line_break_holder] --> pairs (Fisher’s exact test), molecular analysis of variance<!-- [et_pb_line_break_holder] --> (AMOVA) and the respective genetic distances (Reynolds<!-- [et_pb_line_break_holder] --> <em>et al.</em>, 1983) were performed by using the Genetix v.4.05<!-- [et_pb_line_break_holder] --> software (Belkhir <em>et al.</em>, 2002) and Arlequin v3.1 (Excoffier<!-- [et_pb_line_break_holder] --> and Lischer, 2010). Admixture estimations, based on the<!-- [et_pb_line_break_holder] --> Eurasian-Native American-sub-Saharan trihybrid model,<!-- [et_pb_line_break_holder] --> were performed using the ADMIX95 software (http://genetica.fmed.edu.uy/software.htm) which is based on the<!-- [et_pb_line_break_holder] --> Chakraborty (1975) genetic identity method. Populations<!-- [et_pb_line_break_holder] --> genetic affinities were analyzed by the construction of a<!-- [et_pb_line_break_holder] --> principal components graph (PCA), based on Reynolds<!-- [et_pb_line_break_holder] --> distances, by using the Rv3.1.1 FactoMineR (Josse,<!-- [et_pb_line_break_holder] --> 2008) statistical package. The spatial genetic patterns were<!-- [et_pb_line_break_holder] --> estimated through a geographically referenced spatial<!-- [et_pb_line_break_holder] --> principal component analysis (sPCA). This method provides<!-- [et_pb_line_break_holder] --> evidences of global or local genetic structures by considering</font> <font size="3" face="Arial, Helvetica, sans-serif">Esquel (ESQ) 42°54’ S, 71°19’ O; Comodoro<!-- [et_pb_line_break_holder] --> Rivadavia (CR): 45°52’ S, 67°30’ O, and Puerto<!-- [et_pb_line_break_holder] --> Madryn (PM): 42°49’ S, 65°4’ O. The Patagonia<!-- [et_pb_line_break_holder] --> region is shaded in gray.<!-- [et_pb_line_break_holder] --> the geographic distances as well. Global patterns correspond to<!-- [et_pb_line_break_holder] --> positive proper values, whereas negative proper values indicate<!-- [et_pb_line_break_holder] --> local patterns that indicate considerable genetic differences<!-- [et_pb_line_break_holder] --> among neighbors. The importance of global and local<!-- [et_pb_line_break_holder] --> patterns was assessed by the Monte-Carlo test with 10,000<!-- [et_pb_line_break_holder] --> permutations, by using the R adegenet package (Jombart <em>et</em> <em>al.</em>, 2008).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>Comparisons with other world populations</em><!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> In order to analyze the genetic structure of the studied<!-- [et_pb_line_break_holder] -->populations and the inter-population relationship, the results<!-- [et_pb_line_break_holder] -->were compared with those previously obtained in Bahía<!-- [et_pb_line_break_holder] --> Blanca and in twelve worldwide populations by other authors<!-- [et_pb_line_break_holder] --> (<a href="#fig2">Figure 2</a>). These analyses were carried out using data from 10<!-- [et_pb_line_break_holder] --> Alu insertion polymorphisms shared in the sixteen populations<!-- [et_pb_line_break_holder] --> studied (ACE, HS4.69, APOA1, CD4, HS4.32, Sb19.3,<!-- [et_pb_line_break_holder] --> Sb19.12, Yb8NBC120, YbNBC125 and Ya5NBC221).</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig2" id="fig2"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a04fig2.jpg" width="395" height="399" /><br /><!-- [et_pb_line_break_holder] --> Figure 2</b>. Thirteen worldwide populations taken from the literature for<!-- [et_pb_line_break_holder] --> comparative purposes. 1-BB: Bahía Blanca (Resano <em>et al.</em>, 2007); 2-QUE:<!-- [et_pb_line_break_holder] --> Quechua and 3-AYM: Aymara (Gayà-Vidal <em>et al.</em>, 2010); 4-C.SP: Central<!-- [et_pb_line_break_holder] --> Spain, 5-S.SP: Southern Spain, 6-BAL: Balearic Islands, 7-FRA: France,<!-- [et_pb_line_break_holder] --> 8-SIC: Sicily, 9-GRE: Greece, 10-TUR: Turkey, 11-MOR: Morocco, 12-ALG:<!-- [et_pb_line_break_holder] -->Algeria and 13-IC: Ivory Coast (González-Pérez <em>et al.</em>, 2010).</font></p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">RESULTS</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">The allelic frequencies of 16 Alu insertions estimated in<!-- [et_pb_line_break_holder] --> three Central Patagonia populations are detailed in <a href="#tab2">Table<!-- [et_pb_line_break_holder] --> 2</a>. The highest insertion frequencies were recorded for the<!-- [et_pb_line_break_holder] --> APOA1 locus in CR (0.98) and for the Ya5NBC221 locus<!-- [et_pb_line_break_holder] --> in ESQ (0.94). Towest frequencies were observed for the<!-- [et_pb_line_break_holder] --> HS2.43 locus in the three studied populations (0.03 in CR<!-- [et_pb_line_break_holder] --> to 0.07 in PM). Moreover, the lowest genetic diversity was<!-- [et_pb_line_break_holder] --> recorded for the APOA1 locus in CR (H= 0.04) and the<!-- [et_pb_line_break_holder] --> highest heterozygosity for the TPA25 locus (H= 0.62) in<!-- [et_pb_line_break_holder] --> PM which, as expected, showed an intermediate value of<!-- [et_pb_line_break_holder] --> insertion frequency (0.55).<!-- [et_pb_line_break_holder] --> We performed 48 tests (16 loci analyzed/population;<!-- [et_pb_line_break_holder] --> <em>p-value</em>=0.001). </font></p><!-- [et_pb_line_break_holder] --><p><a name="tab2" id="tab2"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b>Table 2</b>. Alu insertion frequencies, heterozygosity and Hardy-Weinberg equilibrium in three localities of Central Patagonia (Exact test).<br /><!-- [et_pb_line_break_holder] --> <img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a04tab2.jpg" width="570" height="610" /><br /><!-- [et_pb_line_break_holder] -->H: average heterozygosity; p-HW: Hardy-Weinberg equilibrium significance, Bonferroni correction (<em>p-value </em>0.05/48= 0.001).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">After Bonferroni correction, , we could<!-- [et_pb_line_break_holder] --> not reject the Hardy-Weinberg equilibrium hypothesis for<!-- [et_pb_line_break_holder] --> any of the sixteen Alu markers (nominal p>0.001).<!-- [et_pb_line_break_holder] --> The AMOVA analysis indicated that most of the total<!-- [et_pb_line_break_holder] --> genetic variation in the three studied populations was due<!-- [et_pb_line_break_holder] --> to within population differences, whereas only 0.46% of<!-- [et_pb_line_break_holder] --> the total genetic variation was due to differences among<!-- [et_pb_line_break_holder] --> populations. The matrix of genetic distances based on<!-- [et_pb_line_break_holder] --> Reynolds method (Reynolds <em>et al.</em>, 1983) did not exhibit<!-- [et_pb_line_break_holder] --> significant differences (FST p-values>0.05) among the<!-- [et_pb_line_break_holder] --> studied Central Patagonia populations: CR <em>vs. </em>ESQ<!-- [et_pb_line_break_holder] --> (FST= 0.0027; p-value= 0.56), CR <em>vs. </em>PM (FST= 0.0051;<!-- [et_pb_line_break_holder] --> p-value 0.39), PM <em>vs. </em>ESQ (FST= 0.0102; p-value 0.32).<!-- [et_pb_line_break_holder] --> The studied populations were compared with thirteen<!-- [et_pb_line_break_holder] --> worldwide populations, arranged in five groups according<!-- [et_pb_line_break_holder] --> to geographic-population criteria: Europe, Sub-Saharan<!-- [et_pb_line_break_holder] --> Africa, North Africa, Admixed America and Native<!-- [et_pb_line_break_holder] --> American (<a href="#fig2">Figure 2</a>). The hierarchic AMOVA analysis was<!-- [et_pb_line_break_holder] --> significant (p-value<0.0001) with values of FST= 0.13<!-- [et_pb_line_break_holder] --> (difference among populations), FSC= 0.02 (differences<!-- [et_pb_line_break_holder] --> among populations and within groups), and FCT= 0.11<!-- [et_pb_line_break_holder] --> (differences among population groups). These values<!-- [et_pb_line_break_holder] --> might indicate the existence of a geographic structure in<!-- [et_pb_line_break_holder] --> the analyzed populations. Such geographic structure was<!-- [et_pb_line_break_holder] --> studied in more detail with an sPCA analysis. The values<!-- [et_pb_line_break_holder] --> of the tests were, respectively, non significant for the global<!-- [et_pb_line_break_holder] --> (p-value= 0.27), and significant for the local (p-value=<!-- [et_pb_line_break_holder] --> 0.02). This differentiation found at local level might be<!-- [et_pb_line_break_holder] --> due to the distinction between Northern Africa and sub-<!-- [et_pb_line_break_holder] --> Saharan groups, since the test was not significant when the<!-- [et_pb_line_break_holder] --> sample from the Ivory Coast (IC) was removed.<br /><!-- [et_pb_line_break_holder] --></font><font size="3" face="Arial, Helvetica, sans-serif">The genetic distance matrix obtained with Reynolds<!-- [et_pb_line_break_holder] --> <em>et al. </em>(1983) index exhibited significant differences<!-- [et_pb_line_break_holder] --> (p-fst<0.05) between the populations of the present study<!-- [et_pb_line_break_holder] --> and those from the rest of the world. However, relatively<!-- [et_pb_line_break_holder] --> low genetic distances were observed among the Central<!-- [et_pb_line_break_holder] --> Patagonia and Bahía Blanca populations (variation range<!-- [et_pb_line_break_holder] --> FST= 0.006-0.013), and between populations from<!-- [et_pb_line_break_holder] --> Southern and Central Spain (variation range= 0.033-<!-- [et_pb_line_break_holder] --> 0.048), whereas larger genetic distances were observed<!-- [et_pb_line_break_holder] --> between the Patagonian and Native American populations<!-- [et_pb_line_break_holder] --> (variation range= 0.094-0.122). On the other hand, the<!-- [et_pb_line_break_holder] --> highest distances were observed between the Patagonian<!-- [et_pb_line_break_holder] --> and Sub-Saharan (IC) populations (variation range= 0.192-<!-- [et_pb_line_break_holder] --> 0.219), highlighting the outlier position of the latter. The<!-- [et_pb_line_break_holder] --> graphic representation of the distances matrix first shows<!-- [et_pb_line_break_holder] --> a cluster among the Central Patagonia samples and then<!-- [et_pb_line_break_holder] --> with Southern Buenos Aires (BB), with an intermediate<!-- [et_pb_line_break_holder] --> position among the Native American, Northern African<!-- [et_pb_line_break_holder] --> and European groups (<a href="#fig3">Figure 3A</a>). The first two axes<!-- [et_pb_line_break_holder] --> represented 73.4% of the total genetic variance. The first<!-- [et_pb_line_break_holder] --> component, including 46.9% of the total variance, clustered<!-- [et_pb_line_break_holder] --> the Argentinian populations in a position intermediate<!-- [et_pb_line_break_holder] --> between the two Native Bolivian populations and the<!-- [et_pb_line_break_holder] --> European and Northern African populations. The second<!-- [et_pb_line_break_holder] --> component (26.4%) allowed the distinction of the sub-<!-- [et_pb_line_break_holder] --> Saharan African population from the rest of the European,<!-- [et_pb_line_break_holder] --> Northern African and South American populations. When<!-- [et_pb_line_break_holder] --> the analysis was repeated to eliminate the effect of the<!-- [et_pb_line_break_holder] --> Ivory Coast sample, the observed pattern was essentially<!-- [et_pb_line_break_holder] --> the same (<a href="#fig3">Figure 3B</a>).<!-- [et_pb_line_break_holder] --></font></p><!-- [et_pb_line_break_holder] --><p><a name="fig3" id="fig3"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a04fig3.jpg" width="493" height="275" /><br /><!-- [et_pb_line_break_holder] --> Figure 3A</b>. Graphic representation of the genetic distances matrix based on Reynold <em>et al. </em>(1983)<!-- [et_pb_line_break_holder] --> distances. Abbreviations of the analyzed populations are described in Figure 2.</font></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a04fig3b.jpg" width="506" height="291" /><!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Figure 3B</b>. Graphic representation of the genetic distance matrix based on Reynold <em>et al. </em>(1983)<!-- [et_pb_line_break_holder] --> distances excluding the South African sample (IC: Ivory Coast). Abbreviations of the<!-- [et_pb_line_break_holder] --> analyzed populations are described in Figure 2.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Based on the trihybrid admixture model of the Latin<!-- [et_pb_line_break_holder] --> American populations, the allelic frequencies of 10 Alu </font><font size="3" face="Arial, Helvetica, sans-serif">loci from Europeans (average C.SP, S.SP, and SIC), Africans<!-- [et_pb_line_break_holder] --> (IC) and native Americans (average QUE and AYM) were<!-- [et_pb_line_break_holder] --> used to represent the parental populations; the respective<!-- [et_pb_line_break_holder] --> references are described in Figure 2. The total Central<!-- [et_pb_line_break_holder] --> Patagonia sample had an Eurasian contribution of 56% (±<!-- [et_pb_line_break_holder] --> 1.7%), African contribution of 5% (± 1.7%), and Native<!-- [et_pb_line_break_holder] --> American contribution of 39% (± 1.2%). At the local<!-- [et_pb_line_break_holder] --> level, those contributions were respectively 58% Eurasian<!-- [et_pb_line_break_holder] --> (± 2.4%), 1.5% African (± 2.2%), and 40.5% Native<!-- [et_pb_line_break_holder] --> American (± 2.0%) in CR city. In ESQ, the contributions<!-- [et_pb_line_break_holder] --> were 54.4% (± 5.5%) Eurasian, 3.3% (± 1.2%) African and<!-- [et_pb_line_break_holder] --> 42.3% (± 3.6%) Native. Finally, in PM, those values were<!-- [et_pb_line_break_holder] --> 56% (± 1.2%) Eurasian, 5% (± 4.8%) African, and 39% (±<!-- [et_pb_line_break_holder] --> 1.0%) Native American.<!-- [et_pb_line_break_holder] --> Genealogical information obtained for each sample<!-- [et_pb_line_break_holder] --> demonstrates local differences in the relationship<!-- [et_pb_line_break_holder] --> between the place of birth and geographic origin of the<!-- [et_pb_line_break_holder] --> grandparents. In this sense, <a href="#fig4">Figure 4</a> shows that the origin of<!-- [et_pb_line_break_holder] --> the grandparents is mainly local in ESQ, from the Central<!-- [et_pb_line_break_holder] --> region in PM, and from Chile in CR, whereas the origin</font> <font size="3" face="Arial, Helvetica, sans-serif">ranking in the second place is Chile in PM, and Europe<!-- [et_pb_line_break_holder] --> in CR and PM. In a lesser extent, other South American<!-- [et_pb_line_break_holder] --> grandparents came from Bolivia, Paraguay, Uruguay, and<!-- [et_pb_line_break_holder] --> Brazil.</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig4" id="fig4"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a04fig4.jpg" width="456" height="223" /><br /><!-- [et_pb_line_break_holder] -->Figure 4</b>. Birthplace of grandparents.</font></p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">DISCUSSION<!-- [et_pb_line_break_holder] --> </font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">This research constitutes the first genetic characterization<!-- [et_pb_line_break_holder] --> of urban populations in the Argentinian Patagonia by<!-- [et_pb_line_break_holder] --> means of analysis of Alu insertion polymorphisms. The<!-- [et_pb_line_break_holder] --> Argentininian population presents a widespread multiple<!-- [et_pb_line_break_holder] --> continental admixture with Native American, Eurasian<!-- [et_pb_line_break_holder] --> and, to a lesser extent, African roots. In this sense, the<!-- [et_pb_line_break_holder] --> Central Patagonian region is not an exception, as it has<!-- [et_pb_line_break_holder] --> been shown previously in studies of uniparental and<!-- [et_pb_line_break_holder] --> biparental genetic heritage markers (Avena <em>et al.</em>, 2009,<!-- [et_pb_line_break_holder] --> 2010, 2012; Parolin <em>et al.</em>, 2013a,b, 2014, 2015a,b).<!-- [et_pb_line_break_holder] --> In order to complement the previously<!-- [et_pb_line_break_holder] --> mentionedstudies, 16 Alu markers were analyzed. The<!-- [et_pb_line_break_holder] --> insertion frequencies and the average heterozygosity<!-- [et_pb_line_break_holder] --> values were similar to those previously recorded in the<!-- [et_pb_line_break_holder] --> Argentinian locality of Bahía Blanca (Resano <em>et al.</em>,<!-- [et_pb_line_break_holder] --> 2007) and, in general, in Northern Africa and Spain<!-- [et_pb_line_break_holder] --> populations (González-Perez <em>et al.</em>, 2010). Nevertheless,<!-- [et_pb_line_break_holder] --> the CD4 locus presented a higher insertion frequency<!-- [et_pb_line_break_holder] --> and a significantly lower heterozygosity value than in<!-- [et_pb_line_break_holder] --> previous studies. In this regard, it has been observed that<!-- [et_pb_line_break_holder] --> the insertion frequency of CD4 is close to 1.00 in native<!-- [et_pb_line_break_holder] --> groups from South America (Gayà-Vidal <em>et al.</em>, 2010).<!-- [et_pb_line_break_holder] --> The comparatively high frequency of the ancestral allele<!-- [et_pb_line_break_holder] --> CD4 might be related to the autoctonous contribution in<!-- [et_pb_line_break_holder] --> the analyzed populations.<!-- [et_pb_line_break_holder] --> Regarding the genetic differentiation observed at local<!-- [et_pb_line_break_holder] --> level, the variation observed in the analyzed Alu markers </font><font size="3" face="Arial, Helvetica, sans-serif">only presents local discontinuities in the African continent,<!-- [et_pb_line_break_holder] -->while these markers are not indicators of significant genetic<!-- [et_pb_line_break_holder] -->heterogeneities in the other continents.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> The admixture estimation based on the trihybrid model<!-- [et_pb_line_break_holder] -->showed that the Central Patagonian sample registered an<!-- [et_pb_line_break_holder] -->autoctonous contribution (36.5% ± 1.9%) higher than<!-- [et_pb_line_break_holder] -->the one previously obtained for Southern Buenos Aires<!-- [et_pb_line_break_holder] -->province (20.9% ± 4.8%). This fact might be related to the<!-- [et_pb_line_break_holder] -->late incorporation of Patagonia to the country (Law 1532,<!-- [et_pb_line_break_holder] -->1884), which allowed the native populations to keep their<!-- [et_pb_line_break_holder] -->autonomy for a longer period than other native groups.<!-- [et_pb_line_break_holder] -->It could also be related to the constant migratory flow<!-- [et_pb_line_break_holder] -->that the Patagonian region receives from inland provinces<!-- [et_pb_line_break_holder] -->and from bordering countries, mainly from Chile, whose<!-- [et_pb_line_break_holder] -->populations has a large native ancestry (Bandieri, 2001;<!-- [et_pb_line_break_holder] -->Eyheramendy <em>et al.</em>, 2015; Gómez-Carballa <em>et al.</em>, 2016).<!-- [et_pb_line_break_holder] -->Nonetheless, possible variations due to chance related to<!-- [et_pb_line_break_holder] -->sample size and to the type and quantity of the analyzed<!-- [et_pb_line_break_holder] -->genetic markers cannot be discarded.<!-- [et_pb_line_break_holder] -->Likewise, the admixture results obtained at the local<!-- [et_pb_line_break_holder] -->level are related to the geographic origin of the ancestors<!-- [et_pb_line_break_holder] -->and to the foundational history of each analyzed<!-- [et_pb_line_break_holder] -->population. This is reflected in the genealogical data that<!-- [et_pb_line_break_holder] -->show clear differences in the geographical origin of the<!-- [et_pb_line_break_holder] -->migrant grandparents by locality. In this sense, it was<!-- [et_pb_line_break_holder] -->observed that, in ESQ, there is a higher frequency of birth<!-- [et_pb_line_break_holder] -->in which the grandparents were also locally born. This<!-- [et_pb_line_break_holder] -->fact could be related to a slow growth of the region and a<!-- [et_pb_line_break_holder] -->better preservation of the autoctonous origin (Finkelstein<!-- [et_pb_line_break_holder] -->and Novella, 2006). Since before its foundation (1906) and<!-- [et_pb_line_break_holder] -->to present days, ESQ has maintained an intense trade with<!-- [et_pb_line_break_holder] -->Chile, being a zone of transport and gateway of migrants<!-- [et_pb_line_break_holder] -->in both sides of the Andes mountain range. ESQ has had<!-- [et_pb_line_break_holder] -->a gradual and diversified growth, also having agroforestry<!-- [et_pb_line_break_holder] -->and tourism as its most important economic activities<!-- [et_pb_line_break_holder] -->(Avena <em>et al.</em>, 2010). CR has had significant contributions<!-- [et_pb_line_break_holder] -->of grandparents from Chile and northern provinces of<!-- [et_pb_line_break_holder] -->Argentina. Both immigrant groups, which have large native<!-- [et_pb_line_break_holder] -->ancestry (Avena <em>et al.</em>, 2012; Bandieri, 2001; Eyheramendy<!-- [et_pb_line_break_holder] --><em>et al.</em>, 2015; Gómez-Carballa <em>et al.</em>, 2016; Gómez-Pérez <em>et al.</em>, 2011; Ramallo <em>et al.</em>, 2011), participated in strong<!-- [et_pb_line_break_holder] -->migratory waves attracted by the exponential growth of<!-- [et_pb_line_break_holder] -->the oil industry, which started in 1907 and is still ongoing<!-- [et_pb_line_break_holder] -->(Avena <em>et al.</em>, 2009).<!-- [et_pb_line_break_holder] --><br /><!-- [et_pb_line_break_holder] -->On the other hand, PM presents the higher proportion<!-- [et_pb_line_break_holder] -->of grandparents from the central region of the country<!-- [et_pb_line_break_holder] -->(30%), who havemostly European ancestry (Avena <em>et al.</em>,<!-- [et_pb_line_break_holder] -->2012), and 23% grandparents born in that continent. This<!-- [et_pb_line_break_holder] -->fact is related to the migration of qualified laborers for the<!-- [et_pb_line_break_holder] -->aluminum industry, mainly from the inner provinces of the<!-- [et_pb_line_break_holder] -->country, and also to the foundational history of PM, with<!-- [et_pb_line_break_holder] -->Welsh, Spanish and Italian roots. Nonetheless, we must<!-- [et_pb_line_break_holder] -->indicate that, during the last two decades, an important<!-- [et_pb_line_break_holder] -->migration from Boliviahas taken place, representing the<!-- [et_pb_line_break_holder] -->migrants from that country 36% of the total coming<!-- [et_pb_line_break_holder] -->from Latin America (INDEC: www.indec.mecon.ar). The<!-- [et_pb_line_break_holder] -->Bolivian community harbors a considerable fraction of<!-- [et_pb_line_break_holder] -->autoctonous ancestry (Heinz <em>et al.</em>, 2013) and, nowadays,<!-- [et_pb_line_break_holder] -->it is estimated that they represent 5.6% of the South<!-- [et_pb_line_break_holder] -->American migrants in the Patagonian region (Castillo and<!-- [et_pb_line_break_holder] -->Gurrieri, 2012). The three cities included in then present<!-- [et_pb_line_break_holder] -->study have less than 150 years of existence; therefore<!-- [et_pb_line_break_holder] -->the migrations have been very important in the growth<!-- [et_pb_line_break_holder] -->of their populations. ESQ is located in a much more<!-- [et_pb_line_break_holder] -->humid area than the other two cities, at the foot of Andes<!-- [et_pb_line_break_holder] -->mountain range. PM and CR are located inthe coast, in<!-- [et_pb_line_break_holder] -->a much drier area. The density of the native population<!-- [et_pb_line_break_holder] -->was much higher in the mountain range than in the coast;<!-- [et_pb_line_break_holder] -->this also explains that the native contribution has a local<!-- [et_pb_line_break_holder] -->origin, being high the correspondence with the recorded<!-- [et_pb_line_break_holder] -->genealogical information. Thus, although the percentage<!-- [et_pb_line_break_holder] -->of Native American contribution was similar in the three<!-- [et_pb_line_break_holder] -->cities, the source of that contribution is different.<!-- [et_pb_line_break_holder] --><br /><!-- [et_pb_line_break_holder] -->The genetic affinities among the populations based on<!-- [et_pb_line_break_holder] -->the Reynolds <em>et al. </em>(1983) distances and their graphical<!-- [et_pb_line_break_holder] -->representation in the correspondent PCA show a<!-- [et_pb_line_break_holder] -->genetic proximity between the studied samples and the<!-- [et_pb_line_break_holder] -->Bahía Blanca population. This may be due in part to the<!-- [et_pb_line_break_holder] -->geographic nexus between Patagonia and Buenos Aires<!-- [et_pb_line_break_holder] -->province, which favors a migratory flow between both<!-- [et_pb_line_break_holder] -->regions. In a similar way, the genetic proximity of the<!-- [et_pb_line_break_holder] -->Central Patagonian samples and the Northern African and<!-- [et_pb_line_break_holder] -->European groups, but with a shift towards the autoctonous<!-- [et_pb_line_break_holder] -->communities, constitutes a clear indicator of the character<!-- [et_pb_line_break_holder] -->of the differential admixture process that took place in the<!-- [et_pb_line_break_holder] -->different regions of Argentina. Even though no significant<!-- [et_pb_line_break_holder] -->differences have been observed among the populations of<!-- [et_pb_line_break_holder] -->the Central Patagonia region, we would like to highlight<!-- [et_pb_line_break_holder] -->the importance of having genealogical data to better<!-- [et_pb_line_break_holder] -->understand and contextualize the genetic data. This<!-- [et_pb_line_break_holder] -->information together with the historical and demographic<!-- [et_pb_line_break_holder] -->data caution us that the analysis of the genetic makeup<!-- [et_pb_line_break_holder] -->of the populations should be approached bearing in mind<!-- [et_pb_line_break_holder] -->the local and regional particularities, which are the result</font> <font size="3" face="Arial, Helvetica, sans-serif">of different historical, migratory, and social andeconomic<!-- [et_pb_line_break_holder] --> processes. For example, this information helps us to<!-- [et_pb_line_break_holder] --> understand that the main source of the autoctonous<!-- [et_pb_line_break_holder] --> contribution was local in ESQ, Chilean in CR and of<!-- [et_pb_line_break_holder] --> various origins in PM.<br /><!-- [et_pb_line_break_holder] --></font><font size="3" face="Arial, Helvetica, sans-serif">Finally, our results highlight the usefulness of Alu<!-- [et_pb_line_break_holder] --> markers as a tool for the study of the biological relations<!-- [et_pb_line_break_holder] --> and the analysis of genetic population admixture. Our<!-- [et_pb_line_break_holder] --> results are also in agreement with the Eurasian, African<!-- [et_pb_line_break_holder] --> and Native American contributions previously observed in<!-- [et_pb_line_break_holder] --> the same populations for blood group systems (Avena <em>et al.</em>,<!-- [et_pb_line_break_holder] --> 2009, 2010; Parolin <em>et al.</em>, 2013b), or using STRs (Parolin <em>et al.</em>, 2015b) and in 99 individual ancestry informative<!-- [et_pb_line_break_holder] --> markers (Avena <em>et al.</em>, 2012) (<a href="#fig5">Figure 5</a>). In conclusion, this<!-- [et_pb_line_break_holder] --> study reveals the utility of Alu insertion polymorphisms<!-- [et_pb_line_break_holder] --> as a complementary tool for population genetic analysis,<!-- [et_pb_line_break_holder] --> being a simple and economical molecular technique. Also,<!-- [et_pb_line_break_holder] --> this study shows the need to increase biparental genetic<!-- [et_pb_line_break_holder] --> information for American urban and rural populations,<!-- [et_pb_line_break_holder] --> which will contribute to better understand the complex<!-- [et_pb_line_break_holder] --> migratory and heterogeneous admixture processes<!-- [et_pb_line_break_holder] -->observed in Latin American populations.</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig5" id="fig5"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><b><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/xxviii2a04fig5.jpg" width="567" height="148" /><br /><!-- [et_pb_line_break_holder] -->Figure 5</b>. Percentage of the estimated genetic admixture in the Central Patagonia region for four autosomal systems.</font></p><!-- [et_pb_line_break_holder] --><p><b><font size="2" face="Arial, Helvetica, sans-serif">BIBLIOGRAPHY</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">1. Avena S.A., Parolin M.L., Boquet M., Dejean C.B.,<!-- [et_pb_line_break_holder] --> Postillone M.B., Alvarez Trentini Y., Di Fabio Rocca<!-- [et_pb_line_break_holder] --> F., Mansilla F., Jones L., Dugoujon J.M., Carnese F.R.<!-- [et_pb_line_break_holder] --> (2010) Mezcla génica y linajes uniparentales en Esquel<!-- [et_pb_line_break_holder] --> (Prov. de Chubut). Su comparación con otras muestras<!-- [et_pb_line_break_holder] --> poblacionales Argentinas. J. Basic Appl. Genet. 21: 01-14.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 2. Avena S.A., Parolin M.L., Dejean C.B., Ríos Part<!-- [et_pb_line_break_holder] --> M.C., Fabrikant G., Goicoechea A.S., Dugoujon<!-- [et_pb_line_break_holder] --> J.M., Carnese F.R. (2009) Mezcla génica y linajes<!-- [et_pb_line_break_holder] --> uniparentales en Comodoro Rivadavia (Provincia de<!-- [et_pb_line_break_holder] --> Chubut, Argentina). Rev. Arg. Antrop. Biol. 11: 25-41.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 3. Avena S., Via M., Ziv E., Gignoux C.R., Dejean C.,<!-- [et_pb_line_break_holder] --> Huntsman S., Torres-Mejía G., Dutil J., Matta J.L.,<!-- [et_pb_line_break_holder] --> Beckman K., Burchard E.G., Parolin M.L., Goicoechea<!-- [et_pb_line_break_holder] --> A., Acreche N., Boquet M., Fernandez V., Rey J., Stern<!-- [et_pb_line_break_holder] --> M.C., Carnese R.F., Fejerman L. (2012) Heterogeneity<!-- [et_pb_line_break_holder] --> in genetic admixture across different regions of<!-- [et_pb_line_break_holder] --> Argentina. Plos One 7 (4): e34695.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 4. Bailliet G., Ramallo V., Muzzio M., Santos M.R., Motti<!-- [et_pb_line_break_holder] --> J.M.B., Bianchi N.O., Bravi C.M. (2011) Antecedentes<!-- [et_pb_line_break_holder] --> y nuevos aportes en el estudio del Cromosoma Y en<!-- [et_pb_line_break_holder] --> poblaciones humanas Sudamericanas. J. Basic Appl.<!-- [et_pb_line_break_holder] --> Genet. 22: 1-9.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 5. Bandieri S. (2001) Cruzando la cordillera: La frontera<!-- [et_pb_line_break_holder] --> argentino-chilena como espacio social. En: Torres SB.<!-- [et_pb_line_break_holder] --> (Ed.) La migración chilena en la Patagonia Austral en<!-- [et_pb_line_break_holder] --> la primera mitad del siglo XX y su inserción en los<!-- [et_pb_line_break_holder] --> centros urbanos de Comodoro Rivadavia, Río Gallegos<!-- [et_pb_line_break_holder] --> y Ushuaia. Centro de Estudios de Historia Regional<!-- [et_pb_line_break_holder] --> (CEHIR), Facultad de Humanidades, Universidad del<!-- [et_pb_line_break_holder] --> Comahue, Neuquén, Argentina pp. 421-458.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 6. Battilana J., Bonatto S.L., Freitas L.B., Hutz M.H., Weimer<!-- [et_pb_line_break_holder] --> T.A., Callegari-Jacques S.M., Batzer M.A., Hill<!-- [et_pb_line_break_holder] --> K., Hurtado A.M., Tsuneto L.T., Petzl-Erler M.L.,<!-- [et_pb_line_break_holder] --> Salzano F.M. (2002) Alu insertions versus blood group<!-- [et_pb_line_break_holder] --> plus protein genetic variability in four Amerindian<!-- [et_pb_line_break_holder] --> populations. Ann. Hum. Biol. 29: 334-347.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 7. Battilana J., Fagundes N.J., Heller A.H., Goldani A., Freitas<!-- [et_pb_line_break_holder] --> L.B., Tarazona-Santos E., Munkhbat B., Munkhtuvshin<!-- [et_pb_line_break_holder] --> N., Krylov M., Benevolenskaia L., Arnett F.C., Batzer<!-- [et_pb_line_break_holder] --> M.A., Deininger P.L., Salzano F.M., Bonatto S.L. (2006)<!-- [et_pb_line_break_holder] --> Alu insertion polymorphisms in Native Americans and<!-- [et_pb_line_break_holder] --> related Asian populations. Ann. Hum. Biol. 33: 142-60.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 8. Batzer M.A., Deininger P.L. (1991) A human-specific<!-- [et_pb_line_break_holder] --> subfamily of Alu sequences. Genomics 9: 481-487.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 9. Batzer M.A., Deininger P.L. (2002) Alu repeats and human<!-- [et_pb_line_break_holder] --> genomic diversity. Nat. Rev. Genet. 3: 370-379.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 10. Belkhir K., Borsa P., Chikhi L., Raufaste N., Bonhomme<!-- [et_pb_line_break_holder] --> F. (2002) GENETIX 4.03, logiciel sous Windows<!-- [et_pb_line_break_holder] --> TM pour la génétique des populations. Laboratoire<!-- [et_pb_line_break_holder] --> Génome, Populations, Interactions, CNRS UMR<!-- [et_pb_line_break_holder] --> 5000, Université de Montpellier II, Montpellier,<!-- [et_pb_line_break_holder] --> France.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 11. Calò C.M., Piras I.S., Moral P., Falchi A., Ghiani M.E.,<!-- [et_pb_line_break_holder] --> Varesi L., Vona G. (2005) Analisi molecolare delle<!-- [et_pb_line_break_holder] --> popolazioni del Mediterraneo attraverso 11 inserzioni<!-- [et_pb_line_break_holder] --> Alu. Antrop. 9: 1-12.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">12. Castillo J., Gurrieri J. (2012) El panorama de las migraciones<!-- [et_pb_line_break_holder] --> limítrofes y del Perú en la Argentina en el inicio del siglo<!-- [et_pb_line_break_holder] --> XXI. En: El impacto de las migraciones en Argentina.<!-- [et_pb_line_break_holder] --> Cuadernos migratorios N° 2. Artola J., Gurrieri J.,<!-- [et_pb_line_break_holder] --> Ezequiel T., Camino A., Vaca V. (Eds.) Organización<!-- [et_pb_line_break_holder] --> Internacional para las Migraciones. Editorial Oficina<!-- [et_pb_line_break_holder] --> regional para América del Sur, Ciudad Autónoma de<!-- [et_pb_line_break_holder] --> Jujuy pp. 365.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 13. Chakraborty R. (1975) Estimation of race admixture: A<!-- [et_pb_line_break_holder] --> new method. Am. J. Phys. Anthropol. 42: 507-511.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 14. Di Fabio Roca D.F., Albeza M.V., Postillone B.M.,<!-- [et_pb_line_break_holder] --> Acreche N., Lafage L., Parolín M.L., Dejean C.,<!-- [et_pb_line_break_holder] --> Carnese F.R., Avena S. (2016) Historia poblacional y<!-- [et_pb_line_break_holder] --> análisis antropogenético de la ciudad de Salta. ANDES:<!-- [et_pb_line_break_holder] --> Antropología e Historia. En prensa<em>.</em></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><!-- [et_pb_line_break_holder] --> 15. Dornelles C.L., Battilana J., Fagundes N.J.R., Freitas L.B.,<!-- [et_pb_line_break_holder] --> Bonatto S.L., Salzano F.M. (2004) Mitochondrial DNA<!-- [et_pb_line_break_holder] --> and Alu insertions in a genetically peculiar population:<!-- [et_pb_line_break_holder] --> The Ayoreo Indians of Bolivia and Paraguay. Am. J.<!-- [et_pb_line_break_holder] --> Hum. Biol. 16: 479-488.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 16. Excoffier L., Lischer H.L. (2010) Arlequin suite ver 3.5: a<!-- [et_pb_line_break_holder] --> new series of programs to perform population genetics<!-- [et_pb_line_break_holder] --> analyses under Linux and Windows. Mol. Ecol. Resour.<!-- [et_pb_line_break_holder] --> 10: 564-7.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 17. Eyheramendy S., Martinez F.M., Vial C., Repetto G.M.<!-- [et_pb_line_break_holder] --> (2015) Genetic structure characterization of Chileans<!-- [et_pb_line_break_holder] --> reflects historical immigration patterns. Nature<!-- [et_pb_line_break_holder] --> Communications 6: 6472.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 18. Finkelstein D., Novella M.M. (2006) Actividades<!-- [et_pb_line_break_holder] --> económicas y proceso de construcción social en las<!-- [et_pb_line_break_holder] --> áreas andinas de Río Negro y Chubut. En: Bandieri<!-- [et_pb_line_break_holder] --> S., Blanco G., Varela G. (Eds.) Hecho en Patagonia.<!-- [et_pb_line_break_holder] --> La historia en perspectiva regional. Editorial Educo-<!-- [et_pb_line_break_holder] --> Universidad Nacional del Comahue, Neuquén, pp.<!-- [et_pb_line_break_holder] --> 191-209.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 19. García A., Demarchi D.A. (2009) Incidence and<!-- [et_pb_line_break_holder] --> Distribution of Native American mtDNA haplogroups<!-- [et_pb_line_break_holder] --> in Central Argentina. Hum. Biol. 81: 59-69.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 20. García A., Dermarchi D., Tovo-Rodrigues L., Pauro M.,<!-- [et_pb_line_break_holder] --> Callegari-Jacques S., Salzano F., Hutz M. (2015) High<!-- [et_pb_line_break_holder] --> interpopulation homogeneity in Central Argentina<!-- [et_pb_line_break_holder] --> As Assessed by Ancestry Informative Markers (AIMs).<!-- [et_pb_line_break_holder] --> Gen. Mol. Biol. 38: 324-331.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 21. Gayà-Vidal M., Dugoujon L.M., Esteban E., Athanasiadis<!-- [et_pb_line_break_holder] --> G., Rodríguez A., Villena M., Vasquez R., Moral P.<!-- [et_pb_line_break_holder] --> (2010) Autosomal and X Chromosome Alu insertions<!-- [et_pb_line_break_holder] --> in Bolivian Aymaras and Quechuas: two languages and<!-- [et_pb_line_break_holder] --> one genetic pool. Hum. Biol. 22: 154-62.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 22. Gómez-Carballa A., Moreno F., Álvarez-Iglesias V.,<!-- [et_pb_line_break_holder] --> Martinón-Torres F., García-Magariños M., Pantoja-<!-- [et_pb_line_break_holder] --> Astudillo J.A., Aguirre-Morales E., Bustos P., Salas A.<!-- [et_pb_line_break_holder] --> (2016) Revealing latitudinal patterns of mitochondrial<!-- [et_pb_line_break_holder] --> DNA diversity in Chileans. Forensic Sci. Int.Genet. 20:<!-- [et_pb_line_break_holder] --> 81-88.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 23. Gómez-Pérez L., Alfonso-Sánchez M.A., Dipierri J.A.,<!-- [et_pb_line_break_holder] --> Alfaro E., García-Obregón S., De Pancorbo M.M.,<!-- [et_pb_line_break_holder] --> Bailliet G., Peña J.A. (2011) Microevolutionary<!-- [et_pb_line_break_holder] --> processes due to landscape features in the province of<!-- [et_pb_line_break_holder] --> Jujuy (Argentina). Am. J. Hum. Biol. 23: 177-84.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 24. Gómez-Pérez L., Alfonso-Sánchez M.A., Dipierri, J.E.,<!-- [et_pb_line_break_holder] --> Sánchez D., Espinosa I., De Pancorbo M.M., Peña J.A.<!-- [et_pb_line_break_holder] --> (2013) Young <em>Alu </em>insertions within the MHC class I<!-- [et_pb_line_break_holder] --> region in Native American populations: Insights into<!-- [et_pb_line_break_holder] --> the origin of the MHC-<em>Alu </em>repeats. Am. J. Hum. Biol.<!-- [et_pb_line_break_holder] --> 25: 359-365. doi:10.1002/ajhb.2237.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 25. González-Pérez E., Via M., Esteban E., López-Alomar A.,<!-- [et_pb_line_break_holder] --> Mazieres S., Harich N., Kandil M., Dugoujon J.M.,<!-- [et_pb_line_break_holder] --> Moral P. (2003) Alu insertions in the Iberian Peninsula<!-- [et_pb_line_break_holder] --> and north west Africa-genetic boundaries or melting<!-- [et_pb_line_break_holder] --> pot. Coll. Antropol. 27: 491-500.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 26. González-Pérez E., Esteban E., Via M., Gayà-Vidal M.,<!-- [et_pb_line_break_holder] --> Athanasiadis G., Dugoujon J.M., Luna F., Mesa M.S.,<!-- [et_pb_line_break_holder] --> Fuster V., Kandil M., Harich N., Bissar-Tadmouri N.,<!-- [et_pb_line_break_holder] --> Saetta A., Moral P. (2010) Population relationships<!-- [et_pb_line_break_holder] --> in the Mediterranean revealed by autosomal genetic<!-- [et_pb_line_break_holder] --> data (Alu and Alu/STR compound systems). Phys.<!-- [et_pb_line_break_holder] --> Anthropol. 141: 430-439.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 27. Heinz T., Álvarez-Iglesias V., Pardo-Seco J., Taboada-<!-- [et_pb_line_break_holder] --> Echalar P., Gómez-Carballa A., Torres-Balanza A.,<!-- [et_pb_line_break_holder] --> Rocabado O., Carracedo A., Vullo C., Salas A. (2013)<!-- [et_pb_line_break_holder] --> Ancestry analysis reveals a predominant Native<!-- [et_pb_line_break_holder] --> American component with moderate European<!-- [et_pb_line_break_holder] --> admixture in Bolivians. Forensic Sci. Int. Genet. 7:<!-- [et_pb_line_break_holder] --> 537-542.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 28. Hernando Herráez I. (2010) Caracterización genética<!-- [et_pb_line_break_holder] --> de las poblaciones de Valencia y Menorca mediante<!-- [et_pb_line_break_holder] --> polimorfismos Alu. Tesis de Maestría en Biología<!-- [et_pb_line_break_holder] --> Humana, Departamento de Biología Animal, Facultad<!-- [et_pb_line_break_holder] --> de Biología, Universidad de Barcelona, España.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 29. INDEC (2010) Censo Nacional de Población, Hogares y<!-- [et_pb_line_break_holder] --> Viviendas. <a href="www.indec.mecon.ar" target="_blank">www.indec.mecon.ar</a>.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">30. Jombart T., Devillard S., Dufour A.B., Pontier D. (2008)<!-- [et_pb_line_break_holder] --> Revealing cryptic spatial patterns in genetic variability<!-- [et_pb_line_break_holder] --> by a new multivariate method. Heredity. Edinb. 101:<!-- [et_pb_line_break_holder] -->92-103.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 31. Josse J. (2008) FactoMineR: An R Package for Multivariate<!-- [et_pb_line_break_holder] --> Analysis. J. Stat. Softw. 25: 1-18.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 32. Luizon M.R., Mendes-Junior C.T., De Oliveira S.F,<!-- [et_pb_line_break_holder] --> Simões A.L. (2007) Ancestry informative markers in<!-- [et_pb_line_break_holder] --> Amerindians from Brazilian Amazon. Am. J. Hum.<!-- [et_pb_line_break_holder] --> Biol. Off. J. Hum. Biol. Counc. 20: 86-90.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 33. Martínez Marignac V.L., Bertoni B., Parra E.J., Bianchi<!-- [et_pb_line_break_holder] --> N.O. (2004) Characterization of admixture in an<!-- [et_pb_line_break_holder] --> urban sample from Buenos Aires, Argentina, using<!-- [et_pb_line_break_holder] --> uniparentally and biparentally inherited genetic<!-- [et_pb_line_break_holder] --> markers. Hum. Biol. 76: 543-57.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 34. Mateus Pereira L.H., Socorro A., Fernandez I., Masleh<!-- [et_pb_line_break_holder] --> M., Vidal D., Bianchi N.O., Bonatto S.L., Salzano<!-- [et_pb_line_break_holder] --> F.M., Herrera R.J. (2005) Phylogenetic information<!-- [et_pb_line_break_holder] --> in polymorphic L1 and Alu insertions from East<!-- [et_pb_line_break_holder] --> Asians and Native American populations. Am. J. Phys.<!-- [et_pb_line_break_holder] --> Anthropol. 1: 171-184.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 35. Motti J.M.B., Muzzio M., Rodenak Kladniew B., Alfaro<!-- [et_pb_line_break_holder] --> E.L., Dipierri J.E., Bailliet G., Bravi C.M. (2013)<!-- [et_pb_line_break_holder] --> Origen y distribución espacial de linajes maternos<!-- [et_pb_line_break_holder] --> nativos en el noroeste y centro oeste argentinos. Rev.<!-- [et_pb_line_break_holder] --> Arg. Antrop. Biol. 15: 3-14.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 36. Parolin M.L., Avena S.A., Di Fabio Rocca F. (2013a) Análisis<!-- [et_pb_line_break_holder] --> de la variación regional en el proceso de mestizaje de la<!-- [et_pb_line_break_holder] --> Argentina. J. Basic Appl. Genet. Supp. 24: 30.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 37. Parolin M.L., Avena S.A., Fleischer S., Pretell M., Di Fabio<!-- [et_pb_line_break_holder] --> Rocca F., Rodríguez D.A., Dejean C.B., Postillone<!-- [et_pb_line_break_holder] --> M.B., Vaccaro M.S., Dahinten S.L., ManeraG., Carnese<!-- [et_pb_line_break_holder] --> F.R. (2013b) Análisis de la diversidad biológica y<!-- [et_pb_line_break_holder] --> mestizaje en la ciudad de Puerto Madryn (Prov. de<!-- [et_pb_line_break_holder] --> Chubut, Argentina). Rev. Arg. Antrop. Biol. 15: 61-75.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 38. Parolin M.L., Basso N.G., Avena S.A. (2014) Mestizaje<!-- [et_pb_line_break_holder] --> en la Patagonia Argentina: Diversidad genética y<!-- [et_pb_line_break_holder] --> poblamiento de Trelew (Prov. Chubut). Basic Appl.<!-- [et_pb_line_break_holder] --> Genet. Supp. 25: 250.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 39. Parolin M.L., Toscanini U., Llull. C. (2015a) No tan<!-- [et_pb_line_break_holder] --> aislados: el componente nativo presente en poblaciones<!-- [et_pb_line_break_holder] --> cosmopolitas de la Patagonia Argentina. Simposio:<!-- [et_pb_line_break_holder] --> Historia y prehistoria de los Pueblos Patagónicos<!-- [et_pb_line_break_holder] --> contada por el ADN. Libro de resúmenes, XLVIII<!-- [et_pb_line_break_holder] --> Reunión Anual de la Sociedad de Genética de Chile,<!-- [et_pb_line_break_holder] --> Valdivia, e9.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 40. Parolin M.L., Real L.E., Martinazzo L.B., Basso<!-- [et_pb_line_break_holder] --> N.G. (2015b) Population genetic analyses of the<!-- [et_pb_line_break_holder] --> Powerplex® Fusion kit in a cosmopolitan sample of<!-- [et_pb_line_break_holder] --> Chubut Province (Patagonia Argentina). Forensic Sci.<!-- [et_pb_line_break_holder] --> Int. Genet. 19: 221-222.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 41. Ramallo V., Salceda S., Bailliet G. (2011) Apellidos, familias<!-- [et_pb_line_break_holder] --> y linajes moleculares: el caso de Azampay, Catamarca.<!-- [et_pb_line_break_holder] --> RUNA 23: 163-184.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 42. Resano M., Esteban E., González-Pérez E., Vía M.,<!-- [et_pb_line_break_holder] --> Athanasiadis G., Avena S., Goicoechea A., Bartomioli<!-- [et_pb_line_break_holder] --> M., Fernández V., Cabrera A., Dejean C., Carnese<!-- [et_pb_line_break_holder] --> F., Moral P. (2007) How many populations set foot<!-- [et_pb_line_break_holder] --> through the Patagonian door? Genetic composition<!-- [et_pb_line_break_holder] --> of the current population of Bahía Blanca (Argentina)<!-- [et_pb_line_break_holder] --> based on data from 19 Alu polymorphisms. Am. J.<!-- [et_pb_line_break_holder] --> Hum. Biol. 19: 827-385.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 43. R Core Team (2017) R: A language and environment<!-- [et_pb_line_break_holder] --> for statistical computing. R Foundation for Statistical<!-- [et_pb_line_break_holder] --> Computing, Vienna, Austria. URL <a href="https://www.Rproject.org" target="_blank">https://www.Rproject.org</a>.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">44. Reynolds J., Weir B.S., Cockerham C.C. (1983) Estimation<!-- [et_pb_line_break_holder] --> of the coancestry coefficient: basis for a short-term genetic<!-- [et_pb_line_break_holder] --> distance. Genetics 105: 767-779.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 45. Rishishwar L., Tellez Villa C.E., King Jordan I. (2015)<!-- [et_pb_line_break_holder] --> Transposable element polymorphisms recapitulate<!-- [et_pb_line_break_holder] --> human evolution. Mob DNA doi:10.1186/s13100-<!-- [et_pb_line_break_holder] --> 015-0052-6.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 46. Rossini O., Bonelli L., Kovacic G. (2007) Chagas en Puerto<!-- [et_pb_line_break_holder] --> Madryn, Chubut. Retrospectiva de los últimos 12 años.<!-- [et_pb_line_break_holder] --> <a href="http://chubut.gov.ar" target="_blank">http://chubut.gov.ar</a>.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 47. Sambrook J., Fritisch E.F., Maniatis T. (1989) Molecular<!-- [et_pb_line_break_holder] --> Cloning: a laboratory Manual. 2nd Edition. Cold<!-- [et_pb_line_break_holder] --> Spring Harbor Laboratory Press, Cold Spring Harbor,<!-- [et_pb_line_break_holder] --> New York.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 48. Stoneking M., Fontius J.J., Clifford S.L., Soodyall H., Arcot<!-- [et_pb_line_break_holder] --> S.S., Saha N., Jenkins T., Tahir M.A., Deininger P.L.,<!-- [et_pb_line_break_holder] --> Batzer M.A. (1997) Alu insertion polymorphisms and<!-- [et_pb_line_break_holder] --> human evolution: evidence for a larger population size<!-- [et_pb_line_break_holder] --> in Africa. Genome Res. 7: 1061-1071.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 49. Toscanini U., Gusmão L., Berardi G., Amorim A.,<!-- [et_pb_line_break_holder] --> Carracedo A., Salas A., Raimondi E. (2007) Testing<!-- [et_pb_line_break_holder] --> for genetic structure in different urban Argentinian<!-- [et_pb_line_break_holder] --> populations. Forensic Sci. Int. 165: 35-40.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 50. Wang S., Ray N., Rojas W., Parra M.V., Bedoya G., Gallo<!-- [et_pb_line_break_holder] --> C. (2008) Geographic Patterns of Genome Admixture<!-- [et_pb_line_break_holder] --> in Latin American Mestizos. PLoS Genet. 4: e1000037.<!-- [et_pb_line_break_holder] --> doi:10.1371/journal.pgen.1000037.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 51. Zanetti D., Sadiq M., Carreras-Torres R., Khabour O.,<!-- [et_pb_line_break_holder] --> Alkaraki A., Esteban E., Via M., Moral P. (2014) Human<!-- [et_pb_line_break_holder] --> Diversity in Jordan: Polymorphic Alu Insertions in<!-- [et_pb_line_break_holder] --> General Jordanian and Bedouin Groups. Hum. Biol.<!-- [et_pb_line_break_holder] --> 86: 131-138. </font></p><!-- [et_pb_line_break_holder] --></body><!-- [et_pb_line_break_holder] --></html>