Vol. XXX Issue 1
Article 2
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><!-- [et_pb_line_break_holder] --><html xmlns="http://www.w3.org/1999/xhtml"><!-- [et_pb_line_break_holder] --><head><!-- [et_pb_line_break_holder] --><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /><!-- [et_pb_line_break_holder] --><title>Untitled Document</title><!-- [et_pb_line_break_holder] --></head><!-- [et_pb_line_break_holder] --><!-- [et_pb_line_break_holder] --><body><!-- [et_pb_line_break_holder] --><p align="right"><font face="Arial, Helvetica, sans-serif"><b><font size="3">OPINION</font></b></font></p><!-- [et_pb_line_break_holder] --><p><font size="4" face="Arial, Helvetica, sans-serif"><b>The impact of molecular genetics in plant breeding:</b> <!-- [et_pb_line_break_holder] --> <b>realities and perspectives</b></font></p><!-- [et_pb_line_break_holder] --><p><i><b><font size="3" face="Arial, Helvetica, sans-serif">El impacto de la genética molecular en el mejoramiento <!-- [et_pb_line_break_holder] --> genético vegetal: realidades y perspectivas</font></b></i></p><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">Zambelli, A.</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">IIDEAGROS, Facultad de Ciencias <!-- [et_pb_line_break_holder] --> Agrarias, Universidad Nacional de <!-- [et_pb_line_break_holder] --> Mar Del Plata <!-- [et_pb_line_break_holder] --> Ruta 226 Km 73,5 (7620) Balcarce, <!-- [et_pb_line_break_holder] --> Argentina</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> <b>Corresponding author</b>: <!-- [et_pb_line_break_holder] --> A. Zambelli <!-- [et_pb_line_break_holder] --> <a href="mailto:andres.zambelli@mdp.edu.ar">andres.zambelli@mdp.edu.ar</a></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Received</b>: 03/26/2019<br /><!-- [et_pb_line_break_holder] --> <b>Accepted</b>: 04/05/2019</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>ABSTRACT</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">Even when conventional breeding was effective in achieving a continuous improvement<!-- [et_pb_line_break_holder] --> in yield, Molecular Genetics tools applied in plant breeding contributed to maximize<!-- [et_pb_line_break_holder] --> genetic gain. Thus, the use of DNA technology applied in agronomic improvement gave<!-- [et_pb_line_break_holder] --> rise to Molecular Breeding, discipline which groups the different breeding strategies where<!-- [et_pb_line_break_holder] --> genotypic selection, based on DNA markers, are used in combination with or in replacement<!-- [et_pb_line_break_holder] --> of phenotypic selection. These strategies can be listed as: marker-assisted selection;<!-- [et_pb_line_break_holder] --> marker-assisted backcrossing; marker assisted recurrent selection; and genomic selection.<!-- [et_pb_line_break_holder] --> Strong arguments have been made about the potential advantages that Molecular Breeding<!-- [et_pb_line_break_holder] --> brings, although little has been devoted to discussing its feasibility in practical applications.<!-- [et_pb_line_break_holder] --> The consequence of the lack of a deep analysis when implementing a strategy of Molecular<!-- [et_pb_line_break_holder] --> Breeding is its failure, leading to many undesirable outcomes and discouraging breeders<!-- [et_pb_line_break_holder] --> from using the technology. The aim of this work is to trigger a debate about the convenience<!-- [et_pb_line_break_holder] --> of the use of Molecular Breeding strategies in a breeding program considering the DNA<!-- [et_pb_line_break_holder] --> technology of choice, the complexity of the trait of agronomic interest to be improved, the<!-- [et_pb_line_break_holder] --> expected accuracy in the selection, and the demanded resources.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Key words</b>: DNA marker; Selection; Plant improvement.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>RESUMEN</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">El mejoramiento convencional ha sido efectivo para lograr una mejora continua en<!-- [et_pb_line_break_holder] --> el rendimiento; sin embargo las herramientas de Genética Molecular aplicadas en el<!-- [et_pb_line_break_holder] --> fitomejoramiento han contribuido a maximizar la ganancia genética. Es así que el uso de la<!-- [et_pb_line_break_holder] --> tecnología de ADN aplicada en la mejora agronómica dio lugar al Mejoramiento Molecular,<!-- [et_pb_line_break_holder] --> disciplina que agrupa las diferentes estrategias en las que la selección genotípica, basada en<!-- [et_pb_line_break_holder] --> marcadores de ADN, es utilizada en combinación con, o bien en reemplazo de, la selección<!-- [et_pb_line_break_holder] --> fenotípica. Estas estrategias se pueden clasificar como: selección asistida por marcadores;<!-- [et_pb_line_break_holder] --> retrocruzamiento asistido por marcadores; selección recurrente asistida por marcadores;<!-- [et_pb_line_break_holder] --> y selección genómica. Se han presentado fuertes argumentos sobre las potenciales<!-- [et_pb_line_break_holder] --> ventajas que aporta el mejoramiento molecular, aunque poco se ha dedicado a discutir la<!-- [et_pb_line_break_holder] --> viabilidad de su aplicación práctica. La consecuencia de la falta de un análisis profundo<!-- [et_pb_line_break_holder] --> al implementar una estrategia de este tipo puede ser su fracaso, lo que puede derivar en<!-- [et_pb_line_break_holder] --> resultados indeseables, desalentando a los fitomejoradores a usar la tecnología. El objetivo<!-- [et_pb_line_break_holder] --> de este trabajo es propiciar un debate sobre la conveniencia del uso práctico de estrategias<!-- [et_pb_line_break_holder] --> de mejoramiento molecular teniendo en cuenta la tecnología de ADN elegida, la complejidad<!-- [et_pb_line_break_holder] --> del rasgo de interés agronómico que se quiere mejorar, la precisión esperada en la selección<!-- [et_pb_line_break_holder] --> y los recursos demandados.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Palabras clave</b>: Marcadores de ADN; Fitomejoramiento; Selección.</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>INTRODUCTION</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">In his review, Dr. Rex Bernardo summarized what<!-- [et_pb_line_break_holder] --> his adviser had taught him about plant breeding for<!-- [et_pb_line_break_holder] --> complex traits: a breeder created genetic variation by<!-- [et_pb_line_break_holder] --> crossing good by good, selected the best progenies in the<!-- [et_pb_line_break_holder] --> cross, and synthesized the best progenies into a new and<!-- [et_pb_line_break_holder] --> improved cultivar (Dudley and Moll, 1969; Bernardo,<!-- [et_pb_line_break_holder] --> 2008). Of course, the reality showed Dr. Bernardo (and<!-- [et_pb_line_break_holder] --> everyone, by the way) that the situation, unfortunately,<!-- [et_pb_line_break_holder] --> is not so simple.<!-- [et_pb_line_break_holder] --> In the classical pedigree breeding method, selecting<!-- [et_pb_line_break_holder] --> superior plants bearing traits of higher heritability<!-- [et_pb_line_break_holder] --> begins in early generations. However, for traits of<!-- [et_pb_line_break_holder] --> low heritability, accurate selection demands the lines<!-- [et_pb_line_break_holder] --> to become more homozygous. Commonly, selection<!-- [et_pb_line_break_holder] --> of superior plants involves visual assessment for<!-- [et_pb_line_break_holder] --> agronomic attributes of interest, as well as laboratory<!-- [et_pb_line_break_holder] --> tests for quality or other phenotype feature. When the<!-- [et_pb_line_break_holder] --> breeding lines become homozygous (F5 or further), they<!-- [et_pb_line_break_holder] --> can be harvested in bulk and evaluated in replicated<!-- [et_pb_line_break_holder] --> field trials. The entire process demands considerable<!-- [et_pb_line_break_holder] --> time (depending on the crop, it may range from 5 to 10<!-- [et_pb_line_break_holder] --> years) and money. Even when conventional breeding<!-- [et_pb_line_break_holder] --> was effective in achieving a continuous improvement<!-- [et_pb_line_break_holder] --> in yield, new technologies were needed to maximize<!-- [et_pb_line_break_holder] --> genetic gain. Thus, during the late 1990’s, DNA-marker<!-- [et_pb_line_break_holder] --> assisted selection offered a promising technology for<!-- [et_pb_line_break_holder] --> plant breeding.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> The first efforts directed to the design of strategies<!-- [et_pb_line_break_holder] --> of plant improvement supported by the use of DNA<!-- [et_pb_line_break_holder] --> markers were based on the mapping of quantitative trait<!-- [et_pb_line_break_holder] --> <em>loci </em>(QTL) in biparental populations. This allowed the<!-- [et_pb_line_break_holder] --> development of DNA markers in linkage disequilibrium<!-- [et_pb_line_break_holder] --> with them. Its application then focused on recurrent<!-- [et_pb_line_break_holder] --> selection schemes to accelerate the pyramiding of QTLs<!-- [et_pb_line_break_holder] --> linked to phenotypes of agronomic interest governed by<!-- [et_pb_line_break_holder] --> a few genes. Thus, the use of DNA technology applied<!-- [et_pb_line_break_holder] --> in agronomic improvement gave rise to Molecular<!-- [et_pb_line_break_holder] --> Breeding, discipline which groups the different<!-- [et_pb_line_break_holder] --> breeding strategies where genotypic selection, based<!-- [et_pb_line_break_holder] --> on DNA markers, are used in combination with, or in<!-- [et_pb_line_break_holder] --> replacement of, phenotypic selection. These can be<!-- [et_pb_line_break_holder] --> listed as: marker-assisted selection; marker-assisted<!-- [et_pb_line_break_holder] --> backcrossing; marker assisted recurrent selection; and<!-- [et_pb_line_break_holder] --> genomic selection (Jiang, 2015).<!-- [et_pb_line_break_holder] --> The advantages of using DNA markers to assist<!-- [et_pb_line_break_holder] --> selection in plant breeding can be summarized as<!-- [et_pb_line_break_holder] --> following:<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> · It allows selection of traits of interest at early stage of<!-- [et_pb_line_break_holder] --> plant growth.<br /><!-- [et_pb_line_break_holder] -->· Unlike the phenotype, the genotype is not affected by<!-- [et_pb_line_break_holder] --> environmental conditions.<!-- [et_pb_line_break_holder] --><br /><!-- [et_pb_line_break_holder] -->· It eliminates the need for phenotypic scoring at every<!-- [et_pb_line_break_holder] --> breeding generation.<!-- [et_pb_line_break_holder] --><br /><!-- [et_pb_line_break_holder] -->· It provides a uniform and reproducible method for<!-- [et_pb_line_break_holder] --> genotype scoring.<br /><!-- [et_pb_line_break_holder] -->· A very small sample of plant, leaf or grain is required<!-- [et_pb_line_break_holder] --> for genotyping.<br /><!-- [et_pb_line_break_holder] -->· The release of new cultivars demands a much lower<!-- [et_pb_line_break_holder] --> number of breeding generations.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">The most widely used technologies are markerassisted<!-- [et_pb_line_break_holder] --> selection (MAS) and marker-assisted<!-- [et_pb_line_break_holder] --> backcrossing (MABC). MAS refers to the selection of<!-- [et_pb_line_break_holder] --> specific alleles for traits controlled by a few <em>loci </em>while<!-- [et_pb_line_break_holder] --> MABC is applied to the transfer of a limited number<!-- [et_pb_line_break_holder] --> of genes from one genetic background to another,<!-- [et_pb_line_break_holder] --> including transgenes.<!-- [et_pb_line_break_holder] --> When setting up a Molecular Breeding (MB) program,<!-- [et_pb_line_break_holder] --> different genotyping platforms can be used but the<!-- [et_pb_line_break_holder] --> final choice will depend on the requirements of marker<!-- [et_pb_line_break_holder] --> density and sample throughput. These platforms range<!-- [et_pb_line_break_holder] --> from low-throughput, PCR-based techniques such<!-- [et_pb_line_break_holder] --> as the traditional SSRs, to the high-throughput SNP<!-- [et_pb_line_break_holder] --> platforms and new sequencing-based methods such<!-- [et_pb_line_break_holder] --> as genotyping-by-sequencing (GBS) and amplicon<!-- [et_pb_line_break_holder] --> sequencing. Depending on the molecular technology<!-- [et_pb_line_break_holder] --> used, DNA markers can be classified into five main types:<!-- [et_pb_line_break_holder] --> restriction fragment length polymorphism (RFLP, the<!-- [et_pb_line_break_holder] --> first DNA marker available); amplified fragment length<!-- [et_pb_line_break_holder] --> polymorphism (AFLP); random amplified polymorphic<!-- [et_pb_line_break_holder] --> DNA (RAPD), microsatellites or simple sequence repeats<!-- [et_pb_line_break_holder] --> (SSR) and single nucleotide polymorphism (SNP).<!-- [et_pb_line_break_holder] --> A comparison of the most conspicuous DNA marker<!-- [et_pb_line_break_holder] --> technologies available is summarized in <a href="#tab1">Table 1</a>.<!-- [et_pb_line_break_holder] --> The practical use of MB tools requires very stringent<!-- [et_pb_line_break_holder] --> false positive and false negative rates; however,there<!-- [et_pb_line_break_holder] --> are a few examples in which some validation of<!-- [et_pb_line_break_holder] --> these rates has been conducted. Many studies have<!-- [et_pb_line_break_holder] --> investigated the utility of DNA markers in breeding<!-- [et_pb_line_break_holder] --> programs; nevertheless, the main criterion that is taken<!-- [et_pb_line_break_holder] --> into account at the time of evaluating its usefulness is<!-- [et_pb_line_break_holder] --> the genetic linkage of the markers with the QTL, while<!-- [et_pb_line_break_holder] --> other issues, such as how reliably the markers classify<!-- [et_pb_line_break_holder] --> favorable and unfavorable alleles, are barely analyzed.<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><a name="tab1" id="tab1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><strong>Table 1. </strong>Comparison of most widely used DNA marker in plants. Adapted from Jiang (2015)</font><br /><!-- [et_pb_line_break_holder] --> <img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/a02tab1.jpg" width="562" height="220" /></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"> The consequence of the lack of a deep analysis when<!-- [et_pb_line_break_holder] --> implementing a strategy of MB is its failure, leading to<!-- [et_pb_line_break_holder] --> many undesirable outcomes and discouraging breeders<!-- [et_pb_line_break_holder] --> from using the technology. This determines that in many<!-- [et_pb_line_break_holder] --> cases the tool is questioned when in fact what failed was<!-- [et_pb_line_break_holder] --> the previous feasibility analysis.<!-- [et_pb_line_break_holder] --> In developing a set of metrics to assess the<!-- [et_pb_line_break_holder] --> performance of a candidate DNA marker, it is necessary<!-- [et_pb_line_break_holder] --> to break down the features of a marker that impact on<!-- [et_pb_line_break_holder] --> its reliability. Thus, Platten <em>et al</em>. (2019) proposed to<!-- [et_pb_line_break_holder] --> evaluate marker quality based on a measurable quality<!-- [et_pb_line_break_holder] --> standard, covering three metric categories: Technical;<!-- [et_pb_line_break_holder] --> Biological; and Breeding.<!-- [et_pb_line_break_holder] --> Technical metrics refers to defining the version of the<!-- [et_pb_line_break_holder] --> marker (when more than one marker locating close to the<!-- [et_pb_line_break_holder] --> QTL is available), call rate, and clarity (that is, how reliable<!-- [et_pb_line_break_holder] --> a sample can be classified as allele A, B or heterozygous).<br /><!-- [et_pb_line_break_holder] --> </font><font size="3" face="Arial, Helvetica, sans-serif">Biological metrics imply the characterization of<!-- [et_pb_line_break_holder] --> the marker linkage to the QTL of interest and the<!-- [et_pb_line_break_holder] --> false positive and false negative rates (FPR and FNR,<!-- [et_pb_line_break_holder] --> respectively).<!-- [et_pb_line_break_holder] --> Breeding metrics describe the relative value of<!-- [et_pb_line_break_holder] --> applying a marker in a specific breeding program,<!-- [et_pb_line_break_holder] --> consisting of three items: breeding program false<!-- [et_pb_line_break_holder] --> positive rate (BpFPR); breeding program false negative<!-- [et_pb_line_break_holder] --> rate (BpFNR); and marker utility. Thus, BpFPR and<!-- [et_pb_line_break_holder] --> BpFNR are equivalent to the FPR and FNR metrics<!-- [et_pb_line_break_holder] --> described above but specific to a particular breeding<!-- [et_pb_line_break_holder] --> program in which they are assessed. As the breeding<!-- [et_pb_line_break_holder] --> pool may be expected to have lower allelic diversity than<!-- [et_pb_line_break_holder] --> occurs species-wide, and because selection and genetic<!-- [et_pb_line_break_holder] --> drift are modifying patterns of linkage disequilibrium<!-- [et_pb_line_break_holder] --> independently across breeding programs, these rates<!-- [et_pb_line_break_holder] --> can be quite different from the true FPR and FNR. They<!-- [et_pb_line_break_holder] --> will require the characterization of donor and recipient<!-- [et_pb_line_break_holder] --> lines, which will involve collecting phenotype data for<!-- [et_pb_line_break_holder] --> each program of interest. In other words, it is important<!-- [et_pb_line_break_holder] --> to evaluate the marker’s reliability for taking breeding<!-- [et_pb_line_break_holder] --> decisions in that specific program.<!-- [et_pb_line_break_holder] --> The last Breeding metrics, marker utility, represents<!-- [et_pb_line_break_holder] --> the number of cultivars without the desired allele with<!-- [et_pb_line_break_holder] --> respect to the number of cultivars with the desired allele<!-- [et_pb_line_break_holder] --> at a given QTL in the breeding population (the lower the<!-- [et_pb_line_break_holder] --> proportion, the higher the utility).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Platten’s proposal provides a systematic and useful<!-- [et_pb_line_break_holder] --> set of criteria to establish a superior marker system for<!-- [et_pb_line_break_holder] --> a target QTL, allowing the choice of an optimal group of<!-- [et_pb_line_break_holder] --> markers when designing an assisted selection strategy<!-- [et_pb_line_break_holder] --> (Platten <em>et al</em>., 2019).<!-- [et_pb_line_break_holder] --> It has been found that classical marker-assisted<!-- [et_pb_line_break_holder] --> selection (based on the identification of QTL) has<!-- [et_pb_line_break_holder] --> worked satisfactorily for simple traits (whose genetic<!-- [et_pb_line_break_holder] --> variance is determined by one or a few <em>loci</em>). Therefore,<!-- [et_pb_line_break_holder] --> the identification and characterization of QTL associated<!-- [et_pb_line_break_holder] --> with traits of agronomic importance has been an area<!-- [et_pb_line_break_holder] --> that deserved the interest of the scientific community in<!-- [et_pb_line_break_holder] --> the last 30 years. A simple exercise gives an account of<!-- [et_pb_line_break_holder] --> it: a bibliographic search on the website of the National<!-- [et_pb_line_break_holder] --> Library of Agriculture (USDA; https://agricola.nal.usda.gov) covering that period and including as keywords<!-- [et_pb_line_break_holder] --> the terms “QTL” and the names of the twelve main<!-- [et_pb_line_break_holder] --> crop species in the world, will show a total of 4476<!-- [et_pb_line_break_holder] --> publications, which in many cases documented the<!-- [et_pb_line_break_holder] --> discovering of three or even more QTLs. Therefore, being<!-- [et_pb_line_break_holder] --> conservative, it would be reasonable to estimate a total<!-- [et_pb_line_break_holder] --> of at least 10,000 QTLs published. However, covering all<!-- [et_pb_line_break_holder] --> crops, the number of DNA markers effectively applied in<!-- [et_pb_line_break_holder] --> breeding selection can be roughly estimated in around<!-- [et_pb_line_break_holder] --> 100 (Bernardo, 2008; Collard and Mackill, 2008; St.<!-- [et_pb_line_break_holder] --> Clair, 2010; Jian, 2015).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Why this large discrepancy between the number of<!-- [et_pb_line_break_holder] --> published QTLs and those that are useful for a markerassisted<!-- [et_pb_line_break_holder] --> selection strategy? Reality indicates that a<!-- [et_pb_line_break_holder] --> breeder will replace phenotypic selection by genotypic<!-- [et_pb_line_break_holder] --> one only if the QTL on which the DNA marker was<!-- [et_pb_line_break_holder] --> designed meets the following requirements: was<!-- [et_pb_line_break_holder] --> clearly validated in different environments and genetic<!-- [et_pb_line_break_holder] --> backgrounds, and explains a significant proportion of<!-- [et_pb_line_break_holder] --> the phenotype variability. Otherwise, the breeder will<!-- [et_pb_line_break_holder] --> not use the technology, avoiding the risk of making an<!-- [et_pb_line_break_holder] --> inaccurate selection with the consequent loss of useful<!-- [et_pb_line_break_holder] --> genetic variability.<!-- [et_pb_line_break_holder] --> The nature of a trait may sometimes suggest that much of<!-- [et_pb_line_break_holder] --> the quantitative variation is controlled by many genes with<!-- [et_pb_line_break_holder] --> small effects. Even if the effects for a large number of minor<!-- [et_pb_line_break_holder] --> QTLs are consistent, pyramiding favorable alleles into a<!-- [et_pb_line_break_holder] --> single cultivar becomes increasingly difficult or unfeasible.<!-- [et_pb_line_break_holder] --> Examples of such traits are grain yield, quantitative disease<!-- [et_pb_line_break_holder] --> resistance and tolerance to abiotic stresses.<br /><!-- [et_pb_line_break_holder] --> </font><font size="3" face="Arial, Helvetica, sans-serif">To illustrate this situation, suppose the objective<!-- [et_pb_line_break_holder] --> is pyramiding four favorable alleles located in four<!-- [et_pb_line_break_holder] --> independent QTL. Suppose a cross between two inbred<!-- [et_pb_line_break_holder] --> lines, each one carrying two of the QTLs of interest.<!-- [et_pb_line_break_holder] --> Which will be the frequency of F2-offspring carrying the<!-- [et_pb_line_break_holder] --> four favorable alleles? Assuming Mendelian inheritance,<!-- [et_pb_line_break_holder] --> the expected frequency of homozygotes at each <em>locus</em><!-- [et_pb_line_break_holder] --> will be 1/4, therefore the frequency of homozygotes<!-- [et_pb_line_break_holder] --> for the four QTLs will be (1/4)4 = 1/256. So, how large<!-- [et_pb_line_break_holder] --> should be the F2 population in order to have a probability<!-- [et_pb_line_break_holder] --> of 0.95 to find at least one plant with favorable alleles<!-- [et_pb_line_break_holder] --> in homozygous state at all four <em>loci</em>? The answer is the<!-- [et_pb_line_break_holder] --> population should have 770 recombinant individuals.<!-- [et_pb_line_break_holder] --> Even if you can build such population, what will happen<!-- [et_pb_line_break_holder] --> with the genetic variability demanded for any breeding<!-- [et_pb_line_break_holder] --> program? How big should be the F2 population if the<!-- [et_pb_line_break_holder] --> plan now is to obtain ten individuals with the four<!-- [et_pb_line_break_holder] --> homozygous alleles? This simple example clearly shows<!-- [et_pb_line_break_holder] --> that a breeding strategy based on pyramiding minor<!-- [et_pb_line_break_holder] --> QTLs would be unfeasible.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> The arising question is, can DNA markers help in order<!-- [et_pb_line_break_holder] --> to develop MB strategies aiming to improve complex traits?<!-- [et_pb_line_break_holder] --> This challenge has led to the development of an<!-- [et_pb_line_break_holder] --> alternative MB methodology named genomic selection<!-- [et_pb_line_break_holder] --> (GS), genomic selection or genomewide selection<!-- [et_pb_line_break_holder] --> (henceforth it will be referred to as GS), emerging as<!-- [et_pb_line_break_holder] --> a valuable method for improving complex traits that<!-- [et_pb_line_break_holder] --> are controlled by many QTLs with small effects. GS<!-- [et_pb_line_break_holder] --> constitutes an approach in which all molecular markers<!-- [et_pb_line_break_holder] --> available through the genome are used in order to<!-- [et_pb_line_break_holder] --> calculate (predict) breeding values and it was firstly<!-- [et_pb_line_break_holder] --> proposed by Meuwissen (2001) to be applied in animal<!-- [et_pb_line_break_holder] --> breeding. However, the development of low-cost and<!-- [et_pb_line_break_holder] --> high-throughput genotyping platforms has made<!-- [et_pb_line_break_holder] --> possible the extension of GS to plant breeding (Rabier<!-- [et_pb_line_break_holder] --> <em>et al</em>., 2016; Crossa <em>et al</em>., 2017; Juliana <em>et al</em>., 2017). GS<!-- [et_pb_line_break_holder] --> is typically performed among the progeny within a<!-- [et_pb_line_break_holder] --> biparental cross between two elite inbreds (breeding<!-- [et_pb_line_break_holder] --> population) where phenotypes and genomewide<!-- [et_pb_line_break_holder] --> genotypes are investigated in the training population (a<!-- [et_pb_line_break_holder] --> subset of the breeding population) to predict significant<!-- [et_pb_line_break_holder] --> relationships between phenotypes and genotypes<!-- [et_pb_line_break_holder] --> using statistical approaches. Marker effects estimated<!-- [et_pb_line_break_holder] --> on the training population will be used to predict the<!-- [et_pb_line_break_holder] --> performance of the best candidates in the rest of the<!-- [et_pb_line_break_holder] --> breeding population solely based on genomic estimated<!-- [et_pb_line_break_holder] --> breeding value (GEBV). Therefore, GS may result in<!-- [et_pb_line_break_holder] --> lower costs because the need to evaluate the phenotype<!-- [et_pb_line_break_holder] --> performance of the entire breeding population is<!-- [et_pb_line_break_holder] --> replaced by a selection based on GEBV. Unlike QTL<!-- [et_pb_line_break_holder] --> mapping, GS does not require to identify DNA markers<!-- [et_pb_line_break_holder] --> with significant effects for a given trait.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> For a better prediction accuracy of GS, a high density<!-- [et_pb_line_break_holder] --> genotype is required so that all QTLs (which, as stated<!-- [et_pb_line_break_holder] --> above, do not need to be identified) are in linkage<!-- [et_pb_line_break_holder] --> disequilibrium with at least one SNP marker (Jiang<!-- [et_pb_line_break_holder] --> 2015). The prediction accuracy is expected to increase<!-- [et_pb_line_break_holder] --> as the product of heritability (<em>h2</em>) and size of the training<!-- [et_pb_line_break_holder] --> population (<em>N</em>) increases. A low <em>h2 </em>can be compensated by<!-- [et_pb_line_break_holder] --> the use of a large <em>N</em>. It is noteworthy that <em>N∙h2 </em>determines<!-- [et_pb_line_break_holder] --> both the power to detect a QTL and the accuracy of GS.<!-- [et_pb_line_break_holder] --> Another important factor to consider is the density of DNA<!-- [et_pb_line_break_holder] --> markers, because if it increases, then also accuracy will do.<!-- [et_pb_line_break_holder] --> However this positive relationship is not linear, since once<!-- [et_pb_line_break_holder] --> having reached a number of 200-500 SNPs, the increase<!-- [et_pb_line_break_holder] --> of accuracy is not so evident, becoming unnecessary the<!-- [et_pb_line_break_holder] --> increase marker density beyond a few hundred (Hickey <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>., 2014; Brandariz and Bernardo, 2019).<!-- [et_pb_line_break_holder] --> Different statistical methods have been developed<!-- [et_pb_line_break_holder] --> to predict unobserved individuals in GS. Linear models<!-- [et_pb_line_break_holder] --> (e.g., GBLUP) and machine-learning algorithms have<!-- [et_pb_line_break_holder] --> been successful in making correct decisions based on<!-- [et_pb_line_break_holder] --> genotype data. Also Kernel-based methods, such as<!-- [et_pb_line_break_holder] --> Reproducing Kernel Hilbert Spaces (commonly known<!-- [et_pb_line_break_holder] --> as RKHS), have extensively delivered good genomic<!-- [et_pb_line_break_holder] --> predictions in plants. Several statistical models based<!-- [et_pb_line_break_holder] --> on the standard GBLUP that incorporate genotype<!-- [et_pb_line_break_holder] --> x environment (G x E) interactions in genomic and<!-- [et_pb_line_break_holder] --> pedigree predictions have provided substantial increases<!-- [et_pb_line_break_holder] --> in the accuracy of predicting individuals in nonassayed<!-- [et_pb_line_break_holder] --> environments helping to exploit positive G x E<!-- [et_pb_line_break_holder] --> interactions. Modeling multi-trait multi-environment<!-- [et_pb_line_break_holder] --> is essential for improving the prediction accuracy of<!-- [et_pb_line_break_holder] --> the performance of newly developed lines in future<!-- [et_pb_line_break_holder] --> years. Application of GS in a breeding program should<!-- [et_pb_line_break_holder] --> not be focused on predicting all individuals, but rather<!-- [et_pb_line_break_holder] --> on classifying individuals into upper, middle, or lower<!-- [et_pb_line_break_holder] --> classes, depending on the trait under selection (Crossa<!-- [et_pb_line_break_holder] --> <em>et al</em>., 2017).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> GS is a promising breeding approach that, if used<!-- [et_pb_line_break_holder] --> efficiently, provides the opportunity to increase the<!-- [et_pb_line_break_holder] --> genetic gain per unit of time and cost. That is why GS is<!-- [et_pb_line_break_holder] --> being adopted in plant improvement programs in several<!-- [et_pb_line_break_holder] --> crops of commercial importance. However, while there<!-- [et_pb_line_break_holder] --> are some efforts focused on the optimal distribution of<!-- [et_pb_line_break_holder] --> resources, such as size of training population, marker<!-- [et_pb_line_break_holder] --> density and structure of breeding population and their<!-- [et_pb_line_break_holder] --> effect on the accuracy and cost of the selection model,<!-- [et_pb_line_break_holder] --> more research is needed to cover these issues.<!-- [et_pb_line_break_holder] --> In the case of breeders who work in large seed<!-- [et_pb_line_break_holder] --> companies, it is not necessary to convince them on<!-- [et_pb_line_break_holder] --> the advantages provided by the application of MB<!-- [et_pb_line_break_holder] --> strategies. However, this is not so simple for breeders<!-- [et_pb_line_break_holder] --> leading successful improvement programs developed in<!-- [et_pb_line_break_holder] --> small companies. Despite they may have heard or even<!-- [et_pb_line_break_holder] --> know about the potential advantages that the use of MB<!-- [et_pb_line_break_holder] --> strategies offers, the combination of lack of information<!-- [et_pb_line_break_holder] --> on how to setup a marker-based approach together with<!-- [et_pb_line_break_holder] --> the scarcity of economic resources, move them away<!-- [et_pb_line_break_holder] --> from the practical application of DNA markers.<!-- [et_pb_line_break_holder] --> It is important to emphasize that it is not strictly<!-- [et_pb_line_break_holder] --> necessary that a MB strategy must be complex and<!-- [et_pb_line_break_holder] --> sophisticated. In many cases, the only use of proved DNA markers for the<!-- [et_pb_line_break_holder] --> selection of a simple trait or its use in the recovery of the recurrent genetic<!-- [et_pb_line_break_holder] --> background in a backcross, provide an enormous advantage in increasing<!-- [et_pb_line_break_holder] --> the genetic gain per time unit. Considering these simple applications as<!-- [et_pb_line_break_holder] --> the starting point, their recurrent use can gradually increase the level of<!-- [et_pb_line_break_holder] --> complexity, which may lead to GS. Of course, the initial investment demanded<!-- [et_pb_line_break_holder] --> for setting up a Molecular Genetics facility is in most cases far away from<!-- [et_pb_line_break_holder] --> small companies or public breeding programs. An alternative to solve this<!-- [et_pb_line_break_holder] --> limitation could be the development of public-private consortia aimed to<!-- [et_pb_line_break_holder] --> establish Molecular Genetics laboratories financed by the partners, which will<!-- [et_pb_line_break_holder] --> also be the users. Encouraging thinking about such initiatives may be easier<!-- [et_pb_line_break_holder] --> than one believes, and its concretion may allow more breeders to use marker<!-- [et_pb_line_break_holder] --> assisted selection technologies, which will ultimately result in delivery of<!-- [et_pb_line_break_holder] -->high-yielding crops, contributing to satisfy a growing global food demand.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong><font size="2">REFERENCES</font></strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">1. Bernardo R. (2008) Molecular Markers and<!-- [et_pb_line_break_holder] --> Selection for Complex Traits in Plants:<!-- [et_pb_line_break_holder] --> Learning from the Last 20 Years. Crop Sci.<!-- [et_pb_line_break_holder] --> 48: 1649–1664.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 2. Brandariz S.P., Bernardo R. (2019) Small ad hoc<!-- [et_pb_line_break_holder] --> versus large general training populations for<!-- [et_pb_line_break_holder] --> genomewide selection in maize biparental<!-- [et_pb_line_break_holder] --> crosses. Theor. Appl. Genet. 132: 347-353.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 3. Collard B.C., Mackill D.J. (2008) Markerassisted<!-- [et_pb_line_break_holder] --> selection: an approach for precision<!-- [et_pb_line_break_holder] --> plant breeding in the twenty-first century.<!-- [et_pb_line_break_holder] --> Philos. Trans. R. Soc. Lond. B Biol. Sci. 363:<!-- [et_pb_line_break_holder] --> 557-572.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 4. Crossa J., Pérez-Rodríguez P., Cuevas J.,<!-- [et_pb_line_break_holder] --> Montesinos-López O., Jarquín D., de los<!-- [et_pb_line_break_holder] --> Campos G., Burgueño J., González-Camacho<!-- [et_pb_line_break_holder] --> J., Pérez-Elizalde S., Beyene Y., Dreisigacker<!-- [et_pb_line_break_holder] --> S., Singh R., Zhang X., Gowda M., Roorkiwal<!-- [et_pb_line_break_holder] --> M., Rukoski J., Varshney R.K. (2017) Genomic<!-- [et_pb_line_break_holder] --> selection in plant breeding: methods,<!-- [et_pb_line_break_holder] --> models, and perspectives. Trends Plant Sci.<!-- [et_pb_line_break_holder] --> 22: 961–975.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 5. Dudley J.W., Moll R.H. (1969) Interpretation<!-- [et_pb_line_break_holder] --> and use of estimates of heritability and<!-- [et_pb_line_break_holder] --> genetic variances in plant breeding. Crop Sci.<!-- [et_pb_line_break_holder] --> 9: 257–262.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 6. Hickey J.M., Dreisigacker S., Crossa J., Hearne<!-- [et_pb_line_break_holder] --> S., Babu R., Prasanna B.M., Grondona M.,<!-- [et_pb_line_break_holder] --> Zambelli A., Windhausen V.S., Mathews K.,<!-- [et_pb_line_break_holder] --> Gorjanc G. (2014) Evaluation of genomic<!-- [et_pb_line_break_holder] --> selection training population designs and<!-- [et_pb_line_break_holder] --> genotyping strategies in plant breeding<!-- [et_pb_line_break_holder] --> programs using simulation. Crop Sci. 54:<!-- [et_pb_line_break_holder] --> 1476–1488</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 7. Jiang G.L. (2015) Molecular marker-assisted<!-- [et_pb_line_break_holder] --> breeding: a plant breeder’s review. In: Al-<!-- [et_pb_line_break_holder] --> Khayri J., Jain S., Johnson D. (eds) Advances<!-- [et_pb_line_break_holder] --> in plant breeding strategies: Breeding,<!-- [et_pb_line_break_holder] --> Biotechnology and Molecular Tools.<!-- [et_pb_line_break_holder] --> Springer, Cham.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 8. Juliana P., Singh R.P., Poland J., Mondal<!-- [et_pb_line_break_holder] --> S., Crossa J., Montesinos-López O.A.,<!-- [et_pb_line_break_holder] --> Dreisigacker S., Pérez-Rodríguez P., Huerta-<!-- [et_pb_line_break_holder] --> Espino J., Crespo-Herrera L., Govindan V.<!-- [et_pb_line_break_holder] --> (2018) Prospects and challenges of applied<!-- [et_pb_line_break_holder] --> genomic selection—A new paradigm in<!-- [et_pb_line_break_holder] --> breeding for grain yield in bread wheat.<!-- [et_pb_line_break_holder] --> Plant Genome 11: 180017. doi: 10.3835/<!-- [et_pb_line_break_holder] --> plantgenome2018.03.0017</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 9. Meuwissen T.H.E., Hayes B.J., Goddard M.E.<!-- [et_pb_line_break_holder] --> (2001) Prediction of total genetic value using<!-- [et_pb_line_break_holder] --> genome-wide dense marker maps. Genetics<!-- [et_pb_line_break_holder] --> 157: 1819–1829</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 10. Platten J.D., Cobb J.N., Zantua R.E. (2019)<!-- [et_pb_line_break_holder] --> Criteria for evaluating molecular markers:<!-- [et_pb_line_break_holder] --> Comprehensive quality metrics to improve<!-- [et_pb_line_break_holder] --> marker assisted selection. PLoS ONE 14:<!-- [et_pb_line_break_holder] --> e0210529.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 11. Rabier C-E., Barre P., Asp T., Charmet G.,<!-- [et_pb_line_break_holder] --> Mangin B. (2016) On the accuracy of genomic<!-- [et_pb_line_break_holder] --> selection. PLoS ONE 11: e0156086.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 12. St. Clair D.A. (2010) Quantitative disease resistance<!-- [et_pb_line_break_holder] --> and quantitative resistance loci in breeding.<!-- [et_pb_line_break_holder] --> Annu. Rev. Phytopathol. 48: 247-268. </font></p><!-- [et_pb_line_break_holder] --></body><!-- [et_pb_line_break_holder] --></html>