Vol. XXX Issue 2
Article 2

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><!-- [et_pb_line_break_holder] --><html xmlns="http://www.w3.org/1999/xhtml"><!-- [et_pb_line_break_holder] --><head><!-- [et_pb_line_break_holder] --><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /><!-- [et_pb_line_break_holder] --><title>Documento sin título</title><!-- [et_pb_line_break_holder] --></head><!-- [et_pb_line_break_holder] --><!-- [et_pb_line_break_holder] --><body><!-- [et_pb_line_break_holder] --><p align="right"><font size="3" face="Arial, Helvetica, sans-serif"><strong>ARTÍCULOS ORIGINALES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="4" face="Arial, Helvetica, sans-serif"><strong>Karyological study in the chilean rhatany <em>Krameria</em></strong> <!-- [et_pb_line_break_holder] --> <strong><em>cistoidea </em>Hook. & Arn. (Krameriaceae)</strong></font></p><!-- [et_pb_line_break_holder] --><p><i><b><font size="3" face="Arial, Helvetica, sans-serif">Estudio cariológico en el pacul chileno Krameria cistoidea Hook. & Arn. (Krameriaceae)</font></b></i></p><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">Palma Rojas C.<sup>1*</sup>, Jara Seguel P.<sup>2</sup>, García M.<sup>1</sup>, von Brand E.<sup>3</sup>, Araya Jaime C.<sup>1,4</sup></font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><font size="2"><sup>1</sup> Departamento de Biologia, <!-- [et_pb_line_break_holder] --> Facultad de Ciencias, Universidad <!-- [et_pb_line_break_holder] --> de La Serena, Casilla 599, La <!-- [et_pb_line_break_holder] --> Serena, Chile.<br /><!-- [et_pb_line_break_holder] --> <sup>2</sup> Departamento de Ciencias<!-- [et_pb_line_break_holder] --> Biologicas y Quimicas, Nucleo de <!-- [et_pb_line_break_holder] --> Estudios Ambientales, Facultad de <!-- [et_pb_line_break_holder] --> Recursos Naturales, Universidad <!-- [et_pb_line_break_holder] --> Catolica de Temuco, Casilla 15-D, <!-- [et_pb_line_break_holder] --> Temuco, Chile.<br /><!-- [et_pb_line_break_holder] --> <sup>3</sup> Departamento de Biologia <!-- [et_pb_line_break_holder] --> Marina, Facultad de Ciencias del <!-- [et_pb_line_break_holder] --> Mar, Universidad Catolica del Norte, <!-- [et_pb_line_break_holder] --> Casilla 117, Coquimbo, Chile.<br /><!-- [et_pb_line_break_holder] --> <sup>4</sup> Instituto de Investigacion <!-- [et_pb_line_break_holder] --> Multidisciplinar en Ciencia y <!-- [et_pb_line_break_holder] --> Tecnologia, Universidad de La <!-- [et_pb_line_break_holder] --> Serena, La Serena, Chile.<br /><!-- [et_pb_line_break_holder] --> <b>Corresponding author</b>: <!-- [et_pb_line_break_holder] --> Claudio Palma-Rojas <!-- [et_pb_line_break_holder] --> <a href="mailto:cpalma@userena.cl">cpalma@userena.cl</a></font></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">DOI: 10.35407/bag.2019.xxx.02.02</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Received</b>: 06/19/2019<br /><!-- [et_pb_line_break_holder] --> <b>Revised version received</b>: 09/27/2019<br /><!-- [et_pb_line_break_holder] --> <b>Accepted</b>: 11/05/2019</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>ABSTRACT</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">The karyotype of the plant species <em>Krameria cistoidea </em>Hook. & Arn. was studied by assessing<!-- [et_pb_line_break_holder] --> chromosome characters such as morphology, size, and C-banding pattern. The karyotype of<!-- [et_pb_line_break_holder] --> <em>K. cistoidea </em>was composed only by metacentric chromosomes in the two populations studied.<!-- [et_pb_line_break_holder] --> The haploid set length was 51.9±2.3 μm and the mean chromosome size was 8.68±0.78 μm.<!-- [et_pb_line_break_holder] --> Some similarities in chromosome morphology and size can be observed among <em>K. cistoidea</em><!-- [et_pb_line_break_holder] --> and <em>K. triandra</em>, in addition to the chromosome number 2n=12 which is conserved within<!-- [et_pb_line_break_holder] --> the genus. <em>K. cistoidea </em>exhibited a symmetric banding pattern with large C-bands in the<!-- [et_pb_line_break_holder] --> telomeres of the short and long arms of all chromosomes, except the short arm of pair 1. The<!-- [et_pb_line_break_holder] --> relative length of the C-bands was 23.5% of the total haploid set length. These cytological<!-- [et_pb_line_break_holder] --> results on <em>K. cistoidea </em>are the first data on quantitative karyotype morphology and C-banding<!-- [et_pb_line_break_holder] --> patterns in the genus <em>Krameria</em>.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Key words</b>: <em>Krameria</em>; Karyotype; C-banding.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>RESUMEN</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">El cariotipo de la especie vegatal <em>Krameria cistoidea </em>Hook. & Arn., 2n=12, se estudió en<!-- [et_pb_line_break_holder] --> individuos de dos poblaciones considerando las variables de tamaño, morfología y patrón<!-- [et_pb_line_break_holder] --> de bandas C. La longitud del set haploide fue de 51,9±2,3 μm con un tamaño cromosómico<!-- [et_pb_line_break_holder] --> promedio de 8,68±0,78 μm. Se encontraron algunas similitudes de morfología y tamaños<!-- [et_pb_line_break_holder] --> cromosómicos entre el cariotipo de <em>K. cistoidea </em>y el descrito para <em>K. triandra</em>, ambas con<!-- [et_pb_line_break_holder] --> 2n=12 guarismo conservado dentro del género. Los cromosomas de <em>K. cistoidea </em>muestran un<!-- [et_pb_line_break_holder] --> patrón simétrico de grandes bandas C en los telómeros de todos ellos, excepto en el brazo<!-- [et_pb_line_break_holder] --> corto del par 1 y con una longitud relativa de los segmentos con bandas C de un 23,5% del<!-- [et_pb_line_break_holder] --> set haploide. Estos resultados son los primeros datos cuantitativos relativos al cariotipo y<!-- [et_pb_line_break_holder] --> patrón de bandas C en el género <em>Krameria</em>.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Palabras clave</b>: <em>Krameria</em>; Cariotipo; Bandas-C.</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>INTRODUCTION</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>Krameria cistoidea </em>(Krameriaceae) Hook. & Arn., is a plant<!-- [et_pb_line_break_holder] --> species endemic to Chile with a center of distribution<!-- [et_pb_line_break_holder] --> located between Huasco (28º S) and Limari rivers<!-- [et_pb_line_break_holder] --> basins (30º S) in the coastal and pre-Andean slopes of a<!-- [et_pb_line_break_holder] --> semiarid zone (Squeo <em>et al.</em>, 2001). Along its geographical<!-- [et_pb_line_break_holder] --> range <em>K. cistoidea </em>shares the habitat with <em>K. lappacea</em>.<!-- [et_pb_line_break_holder] --> At present, almost 16 <em>Krameria </em>species constitute the<!-- [et_pb_line_break_holder] --> monogeneric family <em>Krameriaceae </em>which is distributed<!-- [et_pb_line_break_holder] --> across the Americas, but only two species are present in<!-- [et_pb_line_break_holder] --> Chile. The taxonomic classification of <em>Krameria </em>has been<!-- [et_pb_line_break_holder] --> principally based upon morphology, anatomy, pollen<!-- [et_pb_line_break_holder] --> ultra-structure, wood anatomy and DNA sequences<!-- [et_pb_line_break_holder] --> (Heusser, 1971; Robertson, 1973; Simpson and Skvarla,<!-- [et_pb_line_break_holder] --> 1981; Soltis <em>et al.</em>, 2000; Simpson <em>et al.</em>, 2004; Carlquist,<!-- [et_pb_line_break_holder] --> 2005). Nevertheless, since its description by Loefling<!-- [et_pb_line_break_holder] --> in 1758, the genus <em>Krameria </em>has presented a problem to<!-- [et_pb_line_break_holder] --> taxonomists as to its placement within the dicotyledons<!-- [et_pb_line_break_holder] --> (Robertson, 1973; Simpson and Skvarla, 1981). Currently,<!-- [et_pb_line_break_holder] --> <em>Krameria </em>is considered within the Zygophyllales<!-- [et_pb_line_break_holder] --> order together with other genera belonging to the<!-- [et_pb_line_break_holder] --> Zygophyllaceae family (Soltis <em>et al.</em>, 2000; Simpson <em>et al.</em>,<!-- [et_pb_line_break_holder] --> 2004). Historical reports have described that the roots of<!-- [et_pb_line_break_holder] --> <em>K. cistoidea </em>have had a variety of uses such as medicinal<!-- [et_pb_line_break_holder] --> herb, for liqueur production, and as an important<!-- [et_pb_line_break_holder] --> source of dye (Muñoz, 1985). However, despite of its<!-- [et_pb_line_break_holder] --> extraction and habitat degradation by anthropic and<!-- [et_pb_line_break_holder] --> natural effects, information on its conservation is<!-- [et_pb_line_break_holder] --> scarce, but this species does not meet the criteria to be<!-- [et_pb_line_break_holder] --> considered vulnerable (Benoit, 1989; Squeo <em>et al.</em>, 2001).<!-- [et_pb_line_break_holder] --> <em>Krameria </em>species show a haploid chromosome number<!-- [et_pb_line_break_holder] --> n=6 (Turner, 1958; Lewis <em>et al.</em>, 1962), which later was<!-- [et_pb_line_break_holder] --> corroborated with the count of the diploid number<!-- [et_pb_line_break_holder] --> 2n=12 described in <em>K. triandra </em>(Teppner, 1984). Recently,<!-- [et_pb_line_break_holder] --> the chromosome number 2n=12 was also found in <em>K.</em><!-- [et_pb_line_break_holder] --> <em>cistoidea</em>, which was complemented with data on DNA<!-- [et_pb_line_break_holder] --> C-value (1C=9.3 pg) (Palma Rojas <em>et al.</em>, 2017), thus<!-- [et_pb_line_break_holder] --> supplying new cytological data for the genus. However,<!-- [et_pb_line_break_holder] --> despite these advances, the karyotype morphology has<!-- [et_pb_line_break_holder] --> not been described for species of the genus, and there<!-- [et_pb_line_break_holder] --> are no reports on specific chromosome markers, for<!-- [et_pb_line_break_holder] --> example, C-banding patterns, which show the location<!-- [et_pb_line_break_holder] --> of constitutive heterochromatin. It is remarkable that<!-- [et_pb_line_break_holder] --> the Chilean <em>taxa </em>of <em>Krameria </em>form part of the most<!-- [et_pb_line_break_holder] --> southern species along the geographical range of the<!-- [et_pb_line_break_holder] --> genus in America (Simpson <em>et al.</em>, 2004). In this sense<!-- [et_pb_line_break_holder] --> karyotype studies including heterochromatin location<!-- [et_pb_line_break_holder] --> may be fundamental to understand patterns on genetic<!-- [et_pb_line_break_holder] --> variation, genome evolution and speciation in these<!-- [et_pb_line_break_holder] --> plants (Stebbins, 1971; Guerra, 2000; Levin, 2002; Jara<!-- [et_pb_line_break_holder] --> Seguel <em>et al.</em>, 2010; Jara Arancio <em>et al.</em>, 2012; Jara Seguel<!-- [et_pb_line_break_holder] --> and Urrutia, 2012), and may contribute significantly<!-- [et_pb_line_break_holder] --> to establish the cytological relationships among North<!-- [et_pb_line_break_holder] --> American and South American <em>Krameria </em>species,<!-- [et_pb_line_break_holder] --> supplying also additional evidence for its taxonomic<!-- [et_pb_line_break_holder] --> status within the Zygophyllales. For this reason, we<!-- [et_pb_line_break_holder] --> describe the karyotype morphology and the distribution<!-- [et_pb_line_break_holder] --> of constitutive heterochromatin in <em>K. cistoidea</em>, the<!-- [et_pb_line_break_holder] --> most representative species of the genus present in the<!-- [et_pb_line_break_holder] --> Chilean flora.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>MATERIALS AND METHODS</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Plants of <em>Krameria cistoidea </em>Hook. & Arn. were collected<!-- [et_pb_line_break_holder] --> from two naturally growing populations, in Punta<!-- [et_pb_line_break_holder] --> Colorada (28º 30´ S; 70º 48´ W, altitude 585 m above<!-- [et_pb_line_break_holder] --> sea level), and Cuesta Buenos Aires (30º 2´ S; 70º 49´ W,<!-- [et_pb_line_break_holder] --> altitude 380 m above sea level), both spaced at a distance<!-- [et_pb_line_break_holder] --> of approximately 170 km in Central Chile. Voucher<!-- [et_pb_line_break_holder] --> specimens for both populations were deposited at the<!-- [et_pb_line_break_holder] --> Herbarium of the Universidad de La Serena, La Serena,<!-- [et_pb_line_break_holder] --> Chile (Herbario ULS). Roots of germinated seeds were<!-- [et_pb_line_break_holder] --> pre-treated with 8-Hydroxiquinoline 2 mM at 7º C for<!-- [et_pb_line_break_holder] --> 3 h, fixed in ethanol-glacial acetic acid (3:1 v/v) at 4º C<!-- [et_pb_line_break_holder] --> for 24 h, and stored in ethanol 70% (v/v) at 4º C until<!-- [et_pb_line_break_holder] --> use. To determine chromosome morphology, the roots<!-- [et_pb_line_break_holder] --> were stained with Feulgen reaction and chromosome<!-- [et_pb_line_break_holder] --> preparations were made by squashing the root tips.<!-- [et_pb_line_break_holder] --> For Giemsa C-banding, the fixed roots were washed in<!-- [et_pb_line_break_holder] --> distilled water and treated with a solution of pectinasecellulase<!-- [et_pb_line_break_holder] --> (Fluka; 2:1 w/w) at 7.5% (w/v) in 0.2 M citrate<!-- [et_pb_line_break_holder] --> buffer pH 4.2 at 37º C for 30 minutes. The procedure<!-- [et_pb_line_break_holder] --> used to obtain C-bands was based on the technique<!-- [et_pb_line_break_holder] --> described by Summer (1972). In photomicrographs of<!-- [et_pb_line_break_holder] --> ten metaphase plates (Feulgen preparations) obtained<!-- [et_pb_line_break_holder] --> from ten plants, the short and long arms were measured<!-- [et_pb_line_break_holder] --> and the total relative length of each chromosome pair<!-- [et_pb_line_break_holder] --> (expressed as percentage of the total haploid set length)<!-- [et_pb_line_break_holder] --> was calculated. Additionally, total haploid set length<!-- [et_pb_line_break_holder] --> (THL in μm), and mean chromosome size (in μm) were<!-- [et_pb_line_break_holder] --> estimated. The karyotype was constructed according<!-- [et_pb_line_break_holder] --> to decreasing chromosome length and chromosome<!-- [et_pb_line_break_holder] --> morphology, using the nomenclature by Levan (Levan <em>et</em><!-- [et_pb_line_break_holder] --> <em>al.</em>,1964; Spotorno, 1985). The C-bands were classified<!-- [et_pb_line_break_holder] --> according to their chromosome location as centromeric,<!-- [et_pb_line_break_holder] --> pericentromeric, interstitial or telomeric. Relative<!-- [et_pb_line_break_holder] --> length values of C-bands (RLC) were calculated by using<!-- [et_pb_line_break_holder] --> the follow equation described by Linde-Larsen <em>et al.</em><!-- [et_pb_line_break_holder] --> (1980): RLC= (C-band length of the haploid set / Total<!-- [et_pb_line_break_holder] --> haploid set length) x 100.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>RESULTS</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">The Feulgen stained karyotype of <em>K. cistoidea </em>is shown in<!-- [et_pb_line_break_holder] --> <a href="#fig1"> Figure 1a</a>, and chromosome measurements are presented<!-- [et_pb_line_break_holder] --> in <a href="#tab1">Table 1</a>. Both populations of <em>K. cistoidea </em>studied here<!-- [et_pb_line_break_holder] --> showed a diploid chromosome number of 2n=12, with a<!-- [et_pb_line_break_holder] --> karyotype composed only by metacentric chromosomes.<!-- [et_pb_line_break_holder] --> Satellites and secondary constrictions were not observed<!-- [et_pb_line_break_holder] --> in these chromosomes. The chromosomes of <em>K. cistoidea</em><!-- [et_pb_line_break_holder] --> are large, with a mean chromosome size of 8.68±0.78<!-- [et_pb_line_break_holder] -->μm and a total haploid set length of 51.9±2.3 μm.<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><a name="fig1" id="fig1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><strong><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a02fig1.jpg" width="294" height="105" /><br /><!-- [et_pb_line_break_holder] -->Figure 1a. </strong>Karyotype of <em>Krameria cistoidea</em>, 2n=12. Feulgen stain. Bar=10 μm.</font></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><strong><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a02fig1b.jpg" width="304" height="118" /><br /><!-- [et_pb_line_break_holder] -->Figure 1b. </strong>Karyotype of <em>Krameria cistoidea </em>with Giemsa C-banding. Bar=10 μm. </font></p><!-- [et_pb_line_break_holder] --><p><a name="tab1" id="tab1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="3" face="Arial, Helvetica, sans-serif"><strong><font size="2">Table 1. </font></strong><font size="2">Karyotype characters of <em>Krameria cistoidea</em>. SA, short arm (%); LA, long arm (%); TL, total chromosome length (%); CS, absolute<!-- [et_pb_line_break_holder] -->chromosome size (μm), CI, centromeric index; SD, standard deviation; m, metacentric.</font></font><br /><!-- [et_pb_line_break_holder] --><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a02tab1.jpg" width="553" height="224" /></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"> The C-banded karyotype of <em>K. cistoidea </em>is shown<!-- [et_pb_line_break_holder] --> in <a href="#fig1">Figure 1b</a>. <em>K. cistoidea </em>exhibited C-bands located<!-- [et_pb_line_break_holder] --> in the telomeres of the short and long arms of all<!-- [et_pb_line_break_holder] --> chromosomes, except the short arm of pair 1. These<!-- [et_pb_line_break_holder] --> large regions of constitutive heterochromatin in the<!-- [et_pb_line_break_holder] --> karyotype were concurrent with the presence of many<!-- [et_pb_line_break_holder] --> conspicuous and large chromocenters in the interphase<!-- [et_pb_line_break_holder] --> nuclei (<a href="#fig2">Figure 2</a>). Homologous chromosomes exhibited<!-- [et_pb_line_break_holder] --> similar C-banding patterns and pairing was possible.<!-- [et_pb_line_break_holder] --> The centromeres were also evident in all chromosomes.<!-- [et_pb_line_break_holder] --> The relative length of the C-bands was equivalent to<!-- [et_pb_line_break_holder] --> 23.5% of the total haploid set length. Polymorphism<!-- [et_pb_line_break_holder] --> in C-banding pattern was not observed in both studied<!-- [et_pb_line_break_holder] --> populations.</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig2" id="fig2"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><strong><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a02fig2.jpg" width="297" height="229" /><br /><!-- [et_pb_line_break_holder] --> Figure 2. </strong>Meristematic interphase nuclei of <em>Krameria cistoidea</em>, with many<!-- [et_pb_line_break_holder] -->chromocenters. Bar=10 μm.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>DISCUSSION</strong><!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">The results of this study corroborate the chromosome<!-- [et_pb_line_break_holder] --> number of 2n=12 described previously for <em>K. cistoidea</em><!-- [et_pb_line_break_holder] --> (Palma Rojas <em>et al.</em>, 2017), which is also similar to other<!-- [et_pb_line_break_holder] --> six species of the genus described some decades ago<!-- [et_pb_line_break_holder] --> (Turner, 1958; Lewis <em>et al.</em>, 1962; Teppner, 1984) (<a href="#tab2">Table<!-- [et_pb_line_break_holder] --> 2</a>). In this work, quantitative karyotype morphology of<!-- [et_pb_line_break_holder] --> one Chilean species of the genus <em>Krameria</em>, <em>K. cistoidea</em><!-- [et_pb_line_break_holder] --> (<a href="#fig1">Figure 1a</a>, <a href="#tab1">Table 1</a>) is reported, which is additional to the<!-- [et_pb_line_break_holder] --> data on chromosome number and 2C-value previously<!-- [et_pb_line_break_holder] --> reported for one population of the same species (Cuesta<!-- [et_pb_line_break_holder] --> El Churque population, Chile) (Palma Rojas <em>et al.</em>, 2017).<!-- [et_pb_line_break_holder] --> The karyotype of <em>K. cistoidea </em>was uniform among both<!-- [et_pb_line_break_holder] --> populations studied. However, at the interspecific level<!-- [et_pb_line_break_holder] --> differences in chromosome morphology and size were<!-- [et_pb_line_break_holder] --> observed between the karyotype of <em>K. cistoidea </em>and<!-- [et_pb_line_break_holder] --> <em>K. triandra </em>from Perú. <em>K. cistoidea</em>, with a metacentric<!-- [et_pb_line_break_holder] --> and unimodal karyotype, had all chromosomes with<!-- [et_pb_line_break_holder] --> a centromeric index CI between 0.45 and 0.48 (mean<!-- [et_pb_line_break_holder] --> CI=0.46±0.012), and a chromosome size that varied<!-- [et_pb_line_break_holder] --> between 7.63 and 10.0 μm with an average size of 8.68<!-- [et_pb_line_break_holder] --> μm. In the case of <em>K. triandra </em>the centromeres are located<!-- [et_pb_line_break_holder] --> in median or sub-median region as determined by mean<!-- [et_pb_line_break_holder] --> qualitative analysis, and the range of chromosome size<!-- [et_pb_line_break_holder] --> varied between 10 μm and 14 μm (Teppner, 1984). Such<!-- [et_pb_line_break_holder] --> interspecific differences in chromosome morphology<!-- [et_pb_line_break_holder] --> and size among these <em>Krameria </em>species may be<!-- [et_pb_line_break_holder] --> preliminary evidence on the occurrence of mechanism<!-- [et_pb_line_break_holder] --> of chromosome rearrangements (<em>e.g.</em>, inversions,<!-- [et_pb_line_break_holder] --> duplication, deletions) during the evolution of the genus<!-- [et_pb_line_break_holder] --> as it has been described in various other Angiosperm<!-- [et_pb_line_break_holder] --> groups (Stebbins, 1971; Levin, 2002). Future comparative<!-- [et_pb_line_break_holder] --> karyotype studies in <em>Krameria </em>may give more evidence<!-- [et_pb_line_break_holder] --> to corroborate this hypothesis.<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><a name="tab2" id="tab2"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="3" face="Arial, Helvetica, sans-serif"><strong><font size="2">Table 2. </font></strong><font size="2">Chromosome number for <em>Krameria </em>species. n, gametic<!-- [et_pb_line_break_holder] -->chromosome number; 2n, somatic chromosome number.</font></font><br /><!-- [et_pb_line_break_holder] --><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a02tab2.jpg" width="296" height="256" /></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"> The chromosome location of constitutive<!-- [et_pb_line_break_holder] --> heterochromatin is another additional genome character<!-- [et_pb_line_break_holder] --> for the first time studied here for one <em>Krameria </em>species.<!-- [et_pb_line_break_holder] --> The banding pattern of both populations of <em>K. cistoidea</em> exhibited large blocks of constitutive heterochromatin,<!-- [et_pb_line_break_holder] --> located only in telomeric regions in the short and<!-- [et_pb_line_break_holder] --> long arms of the metacentric chromosomes with a<!-- [et_pb_line_break_holder] --> symmetrical banding (Greilhuber, 1984). However,<!-- [et_pb_line_break_holder] --> due to the large chromosome size (higher to 5.0 μm<!-- [et_pb_line_break_holder] --> according to Guerra, 2000), it is possible that the entire<!-- [et_pb_line_break_holder] --> constitutive heterochromatin content of the species has<!-- [et_pb_line_break_holder] --> not been revealed through this method, as it has also been<!-- [et_pb_line_break_holder] --> described in other plant groups (Schweizer and Loidl,<!-- [et_pb_line_break_holder] --> 1987; Buitendijk and Ramanna, 1996; Guerra, 2000). In<!-- [et_pb_line_break_holder] --> this way, the information on C-bands in <em>Krameria </em>can<!-- [et_pb_line_break_holder] --> be a fundamental knowledge for the application of other<!-- [et_pb_line_break_holder] --> modern molecular techniques (FISH, GISH, CMA3, and/<!-- [et_pb_line_break_holder] --> or DAPI) focused on describing genome organization,<!-- [et_pb_line_break_holder] --> as it has been done in other flowering plants in which<!-- [et_pb_line_break_holder] --> complex C-banding patterns have been performed<!-- [et_pb_line_break_holder] --> (Joachimiak <em>et al.</em>, 1997; Guerra, 2000; Zhou <em>et al.</em>, 2003;<!-- [et_pb_line_break_holder] --> She <em>et al.</em>, 2007; Hamon <em>et al.</em>, 2009). <br /><!-- [et_pb_line_break_holder] --> Within the Zygophyllales, comparative karyological<!-- [et_pb_line_break_holder] --> studies have been made within the genus <em>Bulnesia</em> belonging to Zygophyllaceae. <em>Bulnesia </em>species with<!-- [et_pb_line_break_holder] --> highest (<em>B. retama </em>2C=4.5 pg, and <em>B. chilensis </em>2C=2.9<!-- [et_pb_line_break_holder] --> pg) and lowest 2C-values (<em>B. sarmientoi </em>2C=0.7<!-- [et_pb_line_break_holder] --> pg) possess the most asymmetric karyotype (with<!-- [et_pb_line_break_holder] --> metacentric, submetacentric, subtelocentric and<!-- [et_pb_line_break_holder] --> telocentric chromosomes), whereas species with<!-- [et_pb_line_break_holder] --> intermediate 2C-values (<em>B. foliosa </em>and <em>B. schickendantzii</em>,<!-- [et_pb_line_break_holder] --> both with approximately 2C-Values of 1.1 pg) possess<!-- [et_pb_line_break_holder] --> most symmetric karyotypes (with metacentric and<!-- [et_pb_line_break_holder] --> submetacentric chromosomes) (Poggio <em>et al.</em>, 1986).<!-- [et_pb_line_break_holder] --> In addition, the species with the highest 2C-values (<em>B.</em><!-- [et_pb_line_break_holder] --> <em>retama </em>and <em>B. chilensis</em>) have the highest constitutive<!-- [et_pb_line_break_holder] --> heterochromatin content as reveled by C-banding<!-- [et_pb_line_break_holder] --> patterns (Poggio and Hunzkiker, 1986). All these<!-- [et_pb_line_break_holder] --> karyotype studies in <em>Bulnesia </em>have been useful to elucidate<!-- [et_pb_line_break_holder] --> interesting evolutionary trends within the genus. In the<!-- [et_pb_line_break_holder] --> case of <em>Krameria</em>, the quantitative karyotype characters<!-- [et_pb_line_break_holder] --> described here for <em>K. cistoidea</em>, as well as additional data<!-- [et_pb_line_break_holder] --> on C-banding and 2C-values, should be studied in other <em>Krameria </em>species from both hemispheres, thus revealing<!-- [et_pb_line_break_holder] --> the mechanisms of chromosome evolution that have<!-- [et_pb_line_break_holder] --> occurred in this genus along its distribution range.<!-- [et_pb_line_break_holder] --> On the other hand, phylogenetic relationships among<!-- [et_pb_line_break_holder] --> Krameriaceae and Zygophyllaceae should be carried<!-- [et_pb_line_break_holder] --> out including all genome data that could be feasible to<!-- [et_pb_line_break_holder] --> obtain (<em>e.g.</em>, cytogenetic, molecular), thus providing<!-- [et_pb_line_break_holder] --> valuable data to clarify the taxonomical relationship of<!-- [et_pb_line_break_holder] --> both families within the order Zygophyllales, which is<!-- [et_pb_line_break_holder] --> still confuse.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>REFERENCES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">1. Benoit I. (1989) Libro Rojo de la Flora Terrestre<!-- [et_pb_line_break_holder] --> de Chile. Corporación Nacional Forestal<!-- [et_pb_line_break_holder] --> (CONAF - Chile).</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">2. Buitendijk J., Ramanna M. (1996) Giemsa<!-- [et_pb_line_break_holder] --> C-banded karyotypes of eigth species<!-- [et_pb_line_break_holder] --> of Alstroemeria L. and some of their hybrids.<!-- [et_pb_line_break_holder] --> Ann. Bot. 78: 449-457.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">3. Carlquist S. (2005) Wood anatomy of<!-- [et_pb_line_break_holder] --> Krameriaceae with comparisons with<!-- [et_pb_line_break_holder] --> Zygophyllaceae: Phylesis, ecology and<!-- [et_pb_line_break_holder] --> systematics. Bot. J. Linn. Soc. 149: 257-270.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">4. Freeman C., Brooks R. (1988) Documented plant<!-- [et_pb_line_break_holder] --> chromosome numbers 1988: 1. Chromosome<!-- [et_pb_line_break_holder] --> counts for North American plants. SIDA 13:<!-- [et_pb_line_break_holder] --> 241-250.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">5. Greilhuber J. (1984) Chromosomal evidence<!-- [et_pb_line_break_holder] --> in taxonomy. In: Heywood V.H., moore D.M.<!-- [et_pb_line_break_holder] --> (Eds.) Current concepts in plant taxonomy.<!-- [et_pb_line_break_holder] -->London, Academic Press, pp. 157-180.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 6. Guerra M. (2000) Patterns of heterochromatin<!-- [et_pb_line_break_holder] --> distribution in plant chromosomes. Gen.<!-- [et_pb_line_break_holder] --> Mol. Biol. 23 (4): 1029-1041.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 7. Hamon P., Siljak Yakovlev S., Srisuwan S.,<!-- [et_pb_line_break_holder] --> Robin O., Poncet V., Hamon S., De Kochko<!-- [et_pb_line_break_holder] --> A. (2009) Physical mapping of rDNA and<!-- [et_pb_line_break_holder] --> heterochromatin in chromosomes of 16<!-- [et_pb_line_break_holder] --> <em>Coffea </em>species: A revised view of species<!-- [et_pb_line_break_holder] --> differentiation. Chromosome Res. 17: 291-<!-- [et_pb_line_break_holder] --> 304.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 8. Heusser C. (1971) Pollen and spores of Chile.<!-- [et_pb_line_break_holder] --> Arizona Press, Tucson, USA.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 9. Jara Arancio P., Jara Seguel P., Palma Rojas C.,<!-- [et_pb_line_break_holder] --> Arancio G., Moreno R. (2012) Karyological<!-- [et_pb_line_break_holder] --> study in fifteen <em>Leucocoryne </em>taxa (Alliaceae).<!-- [et_pb_line_break_holder] --> Biología 67 (2): 289-295.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 10. Jara Seguel P., Zúñiga C., Romero Mieres M.,<!-- [et_pb_line_break_holder] --> Von Brand E. (2010) Karyotype study in<!-- [et_pb_line_break_holder] --> <em>Luzuriaga radicans </em>(Liliales: Luzuriagaceae).<!-- [et_pb_line_break_holder] --> Biología 65 (5): 813-816.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 11. Jara Seguel P., Urrutia J. (2012) Cytogenetics<!-- [et_pb_line_break_holder] --> of Chilean Angiosperms: Advances and<!-- [et_pb_line_break_holder] --> prospects. Rev. Chil. Hist. Nat. 85: 1-12.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 12. Joachimiak A., Kula A., Johachimiak G. (1997)<!-- [et_pb_line_break_holder] --> On heterochromatin in karyosystematic<!-- [et_pb_line_break_holder] --> studies. Acta Biol. Kracov. Bot. 39: 69-77.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 13. Kondo K., Segawa M., Musselman L., Mann W.<!-- [et_pb_line_break_holder] --> (1981) Comparative ecological study of the<!-- [et_pb_line_break_holder] --> chromosome races in certain root parasitic<!-- [et_pb_line_break_holder] --> plants of the southeastern USA. Bol. Soc.<!-- [et_pb_line_break_holder] --> Brot. 2 (52): 793-807.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 14. Levan A., Fredga K., Sandberg A. (1964)<!-- [et_pb_line_break_holder] --> Nomenclature for centromeric position on<!-- [et_pb_line_break_holder] --> chromosomes. Hereditas 52: 201-220.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 15. Levin D. (2002) The role of chromosome<!-- [et_pb_line_break_holder] --> change in plant evolution. New York: Oxford<!-- [et_pb_line_break_holder] --> University Press.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 16. Lewis W., Stripling H., Ross R. (1962)<!-- [et_pb_line_break_holder] --> Chromosome numbers for some<!-- [et_pb_line_break_holder] --> angiosperms of the Southern United States<!-- [et_pb_line_break_holder] --> and Mexico. Rhodora 64: 147-161.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 17. Linde Laursen I., Von Bothner R., Jacobsen N.<!-- [et_pb_line_break_holder] --> (1980) Giemsa C-banding in Asiatic taxa of<!-- [et_pb_line_break_holder] --> <em>Hordeum </em>section <em>Stenostachys </em>with notes on<!-- [et_pb_line_break_holder] --> chromosome morphology. Hereditas 93:<!-- [et_pb_line_break_holder] --> 235-254.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 18. Muñoz M. (1985) Flores del Norte de Chile 1.<!-- [et_pb_line_break_holder] --> DIBAM - Municipalidad La Serena, Chile.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 19. Palma Rojas C., Jara Seguel P., García M., von<!-- [et_pb_line_break_holder] --> Brand E. (2017) Nuclear DNA content and<!-- [et_pb_line_break_holder] --> chromosome number of <em>Krameria cistoidea</em><!-- [et_pb_line_break_holder] --> Hook. & Arn. (Krameriaceae). Gayana Bot. 74<!-- [et_pb_line_break_holder] --> (1): 128-130.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 20. Poggio L., Wulff A., Hunziker J. (1986)<!-- [et_pb_line_break_holder] --> Chromosome size, nuclear volume and<!-- [et_pb_line_break_holder] --> DNA content in <em>Bulnesia </em>(Zygophyllaceae).<!-- [et_pb_line_break_holder] --> Darwiniana 27 (1-4): 25-38.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 21. Poggio L., Hunziker J. (1986) Nuclear DNA<!-- [et_pb_line_break_holder] --> content variation in Bulnesia. J. Hered. 77 (1):<!-- [et_pb_line_break_holder] --> 43-48.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 22. Robertson K. (1973) The Krameriaceae in the<!-- [et_pb_line_break_holder] --> Southeastern United States. J. Arnold Arbor.<!-- [et_pb_line_break_holder] --> 54: 322-327.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 23. She C., Liu J., Diao Y., Hu Z., Song Y. (2007)<!-- [et_pb_line_break_holder] --> The distribution of repetitive DNAs along<!-- [et_pb_line_break_holder] --> chromosomes in plants revealed by selfgenomic<!-- [et_pb_line_break_holder] --> <em>in situ </em>hybridization. J. Genet.<!-- [et_pb_line_break_holder] --> Genom. 34 (5): 437-448.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 24. Squeo F., Arancio G., Gutierrez J. (2001)<!-- [et_pb_line_break_holder] --> Libro Rojo de la Flora Nativa y de los Sitios<!-- [et_pb_line_break_holder] --> Prioritarios para su Conservación: Región<!-- [et_pb_line_break_holder] --> de Coquimbo. Editorial Universidad de La<!-- [et_pb_line_break_holder] --> Serena (Chile).</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 25. Schweizer D., Loidl J. (1987) A model for<!-- [et_pb_line_break_holder] --> heterochromatin dispersion and the<!-- [et_pb_line_break_holder] --> evolution of C-band patterns. Chromosomes<!-- [et_pb_line_break_holder] --> Today 9: 61-74.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 26. Simpson B., Helfgott D., Weeks A., Larkin L.<!-- [et_pb_line_break_holder] --> (2004) Species relationships in <em>Krameria</em><!-- [et_pb_line_break_holder] --> (Krameriaceae) based on ITS sequences and<!-- [et_pb_line_break_holder] --> morphology: Implications for character utility<!-- [et_pb_line_break_holder] --> and biogeography. Syst. Bot. 29: 97-108.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 27. Simpson B., Skvarla J. (1981) Pollen<!-- [et_pb_line_break_holder] --> morphology and ultrastructure of <em>Krameria</em><!-- [et_pb_line_break_holder] --> (Krameriaceae): Utility in question of<!-- [et_pb_line_break_holder] --> intrafamilial and interfamilial classification.<!-- [et_pb_line_break_holder] --> Am. J. Bot. 68 (2): 277-294.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 28. Soltis D., Soltis P., Chase M., Mort M., Albach<!-- [et_pb_line_break_holder] --> D., Zanis M., Savolainen V., Hahn W., Hoot S.,<!-- [et_pb_line_break_holder] --> Fay M., Axtell M., Swensen S., Prince I., Kres<!-- [et_pb_line_break_holder] --> W., Nixon K., Farris J. (2000) Angiosperm<!-- [et_pb_line_break_holder] --> phylogeny inferred from 18S rDNA, rbcL, and<!-- [et_pb_line_break_holder] --> atpB sequences. Bot. J. Linn. Soc. 133: 381-<!-- [et_pb_line_break_holder] --> 461.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 29. Spellenberg R. (1986) Chromosome number<!-- [et_pb_line_break_holder] --> reports. Taxon 90: 35-197.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 30. Spotorno A. E. (1985) Conceptos y métodos<!-- [et_pb_line_break_holder] --> en cariología descriptiva y comparada.<!-- [et_pb_line_break_holder] --> In: Fernandez-Donoso R. (ed). El núcleo,<!-- [et_pb_line_break_holder] --> los cromosomas y la evolución. UNESCO,<!-- [et_pb_line_break_holder] --> Santiago, pp.135-163.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 31. Stebbins G. (1971) Chromosomal evolution in<!-- [et_pb_line_break_holder] --> higher plants. Edward Arnold Publishing,<!-- [et_pb_line_break_holder] --> London.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 32. Summer A. (1972) A simple technic for<!-- [et_pb_line_break_holder] --> demonstrating centromere heterocromatin.<!-- [et_pb_line_break_holder] --> Exp. Cell Res. 75: 304-306.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 33. Teppner H. (1984) Karyology von <em>Krameria</em><!-- [et_pb_line_break_holder] --> <em>triandra </em>(Krameriaceae). Kurzfassungen (der<!-- [et_pb_line_break_holder] --> Beiträge). Botaniker-Tagung, Deutscher<!-- [et_pb_line_break_holder] --> Botanische Gesellschaft Wien, 1984: pp. 71.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 34. Turner B. (1958) Chromosome numbers in the<!-- [et_pb_line_break_holder] --> genus <em>Krameria</em>: evidence for familial status.<!-- [et_pb_line_break_holder] --> Rhodora 60: 101-106.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 35. Ward D. (1983) IOPB chromosome number<!-- [et_pb_line_break_holder] --> reports LX. Taxon 32: 510-511.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 36. Weedin J., Powell A. (1978) In IOPB chromosome<!-- [et_pb_line_break_holder] --> number reports LX. Taxon 27: 223-231.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 37. Zhou S., De Jeu M., Visser R., Kuipers A. (2003)<!-- [et_pb_line_break_holder] --> Characterization of distant <em>Alstroemeria</em><!-- [et_pb_line_break_holder] --> hybrids: application of highly repetitive DNA<!-- [et_pb_line_break_holder] --> sequences from <em>A. ligtu </em>ssp. <em>ligtu</em>. Ann. Appl.<!-- [et_pb_line_break_holder] --> Biol. 142: 277-283.</font></p><!-- [et_pb_line_break_holder] --></body><!-- [et_pb_line_break_holder] --></html>
Verified by MonsterInsights