Vol. XXX Issue 2
Article 3

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><!-- [et_pb_line_break_holder] --><html xmlns="http://www.w3.org/1999/xhtml"><!-- [et_pb_line_break_holder] --><head><!-- [et_pb_line_break_holder] --><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /><!-- [et_pb_line_break_holder] --><title>Documento sin título</title><!-- [et_pb_line_break_holder] --></head><!-- [et_pb_line_break_holder] --><!-- [et_pb_line_break_holder] --><body><!-- [et_pb_line_break_holder] --><p align="right"><font size="3" face="Arial, Helvetica, sans-serif"><strong>ARTÍCULOS ORIGINALES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="4" face="Arial, Helvetica, sans-serif"><strong>TP53 pathogenic variants related to cancer</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><b><i>Variantes patogénicas de TP53 relacionadas con cáncer</i></b></font></p><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">Rosero C.Y.<SUP>1*</sup>, Mejia L.G.<SUP>1</sup>, Corredor M.<SUP>2,3</sup></font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><font size="2"><SUP>1</sup> Interdisciplinary Research Group <!-- [et_pb_line_break_holder] --> in Health and Disease, Medicine <!-- [et_pb_line_break_holder] --> Faculty, Universidad Cooperativa <!-- [et_pb_line_break_holder] --> de Colombia, San Juan de Pasto, <!-- [et_pb_line_break_holder] --> Narino, Colombia.<br /><!-- [et_pb_line_break_holder] --> <SUP>2</sup> Genetics and Biochemistry of <!-- [et_pb_line_break_holder] --> Microorganisms, Natural and Exact <!-- [et_pb_line_break_holder] --> Sciences Faculty, Biology Institute, <!-- [et_pb_line_break_holder] --> Universidad de Antioquia, Medellin, <!-- [et_pb_line_break_holder] --> Colombia.<br /><!-- [et_pb_line_break_holder] --> <SUP>3</sup> Genetics, Regeneration and <!-- [et_pb_line_break_holder] --> Cancer, GRC, Natural and Exact <!-- [et_pb_line_break_holder] --> Sciences Faculty</font><font size="2">, Biology Institute, <!-- [et_pb_line_break_holder] --> Universidad de Antioquia, Medellin, <!-- [et_pb_line_break_holder] --> Colombia.<br /><!-- [et_pb_line_break_holder] --> <b>Corresponding author</b>: <!-- [et_pb_line_break_holder] --> Carol Yovanna Rosero Galindo <!-- [et_pb_line_break_holder] --> <a href="mailto:carol.roserog@campusucc.edu.co">carol.roserog@campusucc.edu.co</a></font></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">DOI: 10.35407/bag.2019.xxx.02.03</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Received</b>: 07/12/2019<br /><!-- [et_pb_line_break_holder] --> <b>Revised version received</b>: 10/25/2019<br /><!-- [et_pb_line_break_holder] --> <b>Accepted</b>: 11/07/2019</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>ABSTRACT</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">TP53 or P53 is a tumor suppressor gene known as the “genome guardian”, responsible<!-- [et_pb_line_break_holder] --> for inducing cell response to DNA damage, by stopping the cell cycle in case of mutation,<!-- [et_pb_line_break_holder] --> activating DNA repair enzymes, initiating senescence and activation of apoptosis. Mutations<!-- [et_pb_line_break_holder] --> in the gene sequence can cause non-synonymous mutations or errors in the reading frame<!-- [et_pb_line_break_holder] --> by insertion, deletion or displacement of nucleotides: <em>e.g.</em>, c.358A>G mutation in exon 4 and<!-- [et_pb_line_break_holder] --> variants located in exons 9 and 10 of the TD domain. Therefore, in this review, we will see<!-- [et_pb_line_break_holder] --> that changes in the reading frame, including the loss of one or two base pairs could prevent<!-- [et_pb_line_break_holder] --> accurate transcription or changes in the structure and function of the protein, and could<!-- [et_pb_line_break_holder] --> completely impair reparation function. These changes promote self-sufficiency in growth<!-- [et_pb_line_break_holder] --> signaling, insensitivity to anti-growth signals, and evasion of apoptosis, resulting in<!-- [et_pb_line_break_holder] --> limitless replication and induction of metastatic angiogenesis, generating as a consequence<!-- [et_pb_line_break_holder] --> the proliferation of tumor, neoplastic, and lymphoid cells. Taking into account the<!-- [et_pb_line_break_holder] --> importance of TP53 in the regulation of the cell cycle, the objective of this review is to update<!-- [et_pb_line_break_holder] --> information related to the role of this gene in the development of cancer and the description<!-- [et_pb_line_break_holder] --> of genetic variations.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Key words</b>: Neoplasms; Nuclear phosphoprotein p53; Tumor Suppressor; Mutation; Clinvar;<!-- [et_pb_line_break_holder] --> Uniprot</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>RESUMEN</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">TP53 o P53 es un gen supresor de tumores conocido como el “guardián del genoma”,<!-- [et_pb_line_break_holder] --> encargado de inducir la respuesta de la célula ante el daño del ADN, deteniendo el ciclo<!-- [et_pb_line_break_holder] --> celular en caso de mutación, activando enzimas de reparación del ADN, iniciando el<!-- [et_pb_line_break_holder] --> proceso de senescencia celular y activación de la apoptosis. Las mutaciones en la secuencia<!-- [et_pb_line_break_holder] --> del gen pueden originar mutaciones no sinónimas o errores en el marco de lectura por la<!-- [et_pb_line_break_holder] --> inserción, deleción o desplazamiento de nucleótidos: ejemplo, mutación c.358A>G en<!-- [et_pb_line_break_holder] --> el exón 4 y variantes que se albergan en los exones 9 y 10 del dominio TD. Por lo tanto en<!-- [et_pb_line_break_holder] --> esta revisión examinaremos cambios en el marco de lectura, incluyendo la pérdida de una<!-- [et_pb_line_break_holder] --> o dos pares de bases, que podrían impedir la exacta transcripción o cambiar la estructura y<!-- [et_pb_line_break_holder] --> función de la proteína o perjudicar completamente la función de reparación. Tales cambios<!-- [et_pb_line_break_holder] --> promueven la auto-suficiencia en la señal de crecimiento, la insensibilidad a señales anticrecimiento<!-- [et_pb_line_break_holder] --> y la evasión de la apoptosis, lo que resulta en la replicación ilimitada y la<!-- [et_pb_line_break_holder] --> inducción de angiogénesis metastásica, generando como consecuencia la proliferación de<!-- [et_pb_line_break_holder] --> células tumorales, neoplásicas y linfoides. Teniendo en cuenta la importancia del TP53 en la<!-- [et_pb_line_break_holder] --> regulación del ciclo celular, el objetivo de la presente revisión es actualizar la información<!-- [et_pb_line_break_holder] --> relacionada con el papel de este gen en el desarrollo de cáncer y la descripción de las<!-- [et_pb_line_break_holder] --> variaciones genéticas.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Palabras clave</b>: Neoplasma; Fosfoproteína nuclear p53; Supresor de tumor; Mutation; Clinvar;<!-- [et_pb_line_break_holder] --> Uniprot.</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>TP53 IN THE DEVELOPMENT</strong><!-- [et_pb_line_break_holder] --> <strong>OF CANCER</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Cancer is the result of the accumulation of multiple<!-- [et_pb_line_break_holder] --> alterations in the genes that regulate cell growth and are<!-- [et_pb_line_break_holder] --> considered critical for the progressive transformation<!-- [et_pb_line_break_holder] --> of non-cancerous cells to malignant cells (Sánchez,<!-- [et_pb_line_break_holder] --> 2006; Pierce, 2009; Herrera <em>et al</em>., 2010; Risueño, 2012).<!-- [et_pb_line_break_holder] --> Some alterations include point mutations, chromosome<!-- [et_pb_line_break_holder] --> disruption, repair interruption, epigenetic alterations,<!-- [et_pb_line_break_holder] --> and oncogene rearrangements as well as loss or<!-- [et_pb_line_break_holder] --> alteration in the function of tumor suppressor genes<!-- [et_pb_line_break_holder] --> (Roa <em>et al.</em>, 2000; Pierce, 2009).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Among the tumor suppressor genes most commonly<!-- [et_pb_line_break_holder] --> altered in various cancers, the <em>tumor suppressor gene</em><!-- [et_pb_line_break_holder] --> <em>TP53 </em>is notable. TP53 has been reported as a viable<!-- [et_pb_line_break_holder] --> genetic marker for the diagnosis and prognosis of<!-- [et_pb_line_break_holder] --> various types of tumors (Ramírez <em>et al</em>., 2008). The TP53<!-- [et_pb_line_break_holder] --> gene product is a tumor suppressor protein that is also<!-- [et_pb_line_break_holder] --> known as tumor protein P53, P53 cellular antigen tumor<!-- [et_pb_line_break_holder] --> (UniProt), P53 phosphoprotein, P53 suppressor tumor,<!-- [et_pb_line_break_holder] --> NY-CO13 antigen, or transformation-related protein 53<!-- [et_pb_line_break_holder] --> (TRP53). It corresponds to a crucial orthologous protein<!-- [et_pb_line_break_holder] --> that prevents cancer in several organisms. Colloquially,<!-- [et_pb_line_break_holder] --> it is termed the “guardian of the genome”, because it<!-- [et_pb_line_break_holder] --> prevents mutations and maintains genomic stability<!-- [et_pb_line_break_holder] --> (Isobe <em>et al</em>., 1986; Kern <em>et al</em>., 1991; McBride <em>et al</em>., 1986;<!-- [et_pb_line_break_holder] --> Bourdon, 2007).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> The International Cancer Genome Consortium<!-- [et_pb_line_break_holder] --> established that TP53 is the most frequently mutated<!-- [et_pb_line_break_holder] --> gene (>50%), indicating that it plays a crucial role in<!-- [et_pb_line_break_holder] --> the prevention of cancer formation (Surget <em>et al</em>., 2013).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>STRUCTURE-FUNCTION RELATIONSHIP</strong><!-- [et_pb_line_break_holder] --> <strong>OF P53</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">TP53 is located on the short arm of chromosome 17 at<!-- [et_pb_line_break_holder] --> position 17p13.1, extending more than 20 kb (20,000<!-- [et_pb_line_break_holder] --> bases, depending on the variant), with the first noncoding<!-- [et_pb_line_break_holder] --> exon and a first long intron of 10 kb. The coding<!-- [et_pb_line_break_holder] --> sequence covers from exon 2 to the initial part of exon<!-- [et_pb_line_break_holder] --> 11 and codes for a 53 kDa nuclear phosphoprotein called<!-- [et_pb_line_break_holder] --> P53 that is divided into three regions and domains, each<!-- [et_pb_line_break_holder] --> with a specific function (Alpízar <em>et al</em>., 2005; Rangel <em>et al</em>.,<!-- [et_pb_line_break_holder] --> 2006; Gallego <em>et al</em>., 2010; López, 2011). The conformation<!-- [et_pb_line_break_holder] --> of the tetramer structure (<a href="#fig1">Figure 1</a>) and active regions of<!-- [et_pb_line_break_holder] --> the protein (<a href="#fig2">Figure 2</a>) are presented below:</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig1" id="fig1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="3" face="Arial, Helvetica, sans-serif"><strong><font size="2"><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a03fig1.jpg" width="515" height="361" /><br /><!-- [et_pb_line_break_holder] --> Figure 1. </font></strong><font size="2">Formation of P53 tetramers on the DNA seen by Chimera 3,4. The structure of PDB<!-- [et_pb_line_break_holder] -->(<a href="http://www.rcsb.org/pdb/" target="_blank">http://www.rcsb.org/pdb/</a>), assembly 2AC0 developed by Kitayner <em>et al.</em>, 2006.</font></font></p><!-- [et_pb_line_break_holder] --><p><a name="fig2" id="fig2"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><strong><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a03fig2.jpg" width="512" height="350" /><br /><!-- [et_pb_line_break_holder] --> Figure 2. </strong>Some amino acids of the active protein domain with DNA, as seen by Chimera (Pettersen <em>et al.</em>, 2004) 3,4. Lysine-120<!-- [et_pb_line_break_holder] --> and Serine-121 (Zhao <em>et al.</em>, 2001; Joerger <em>et al.</em>, 2004), Serine-241 (Sjoeblom <em>et al.</em>, 2006; Rodrigues <em>et al</em>., 1990); and Arginine 280<!-- [et_pb_line_break_holder] -->(Bartek <em>et al.</em>, 1990; Qin <em>et al.</em>, 2015).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"> The p53 protein consists of five main domains:<br /><!-- [et_pb_line_break_holder] --> 1. The amino-terminal region, which carries the<!-- [et_pb_line_break_holder] --> activation domains of transcription: AD1 and AD2<!-- [et_pb_line_break_holder] --> (amino acids 1–42:43–63).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> 2. The next region which contains many amino acid<!-- [et_pb_line_break_holder] --> repeats of proline, called PRD, or a domain rich in<!-- [et_pb_line_break_holder] --> proline (amino acids 64–91).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> 3. The central region (amino acids 101–306) which<!-- [et_pb_line_break_holder] --> corresponds to the DNA-specific sequence binding<!-- [et_pb_line_break_holder] --> domain (DBD), being the region where the highest<!-- [et_pb_line_break_holder] --> number of mutations in human cancer has been<!-- [et_pb_line_break_holder] --> recorded.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> 4. The carboxyl-terminal region, which contains the<!-- [et_pb_line_break_holder] --> tetramer domain TD (amino acids 334–356), and<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> 5. The basic or alkaline domain BD (amino acids 364–<!-- [et_pb_line_break_holder] --> 393); these domains participate in the formation of<!-- [et_pb_line_break_holder] --> dimers and tetramers where the tetrameric complex<!-- [et_pb_line_break_holder] --> is active in transcriptional regulation.<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">The conformation of the tetramer structure and active<!-- [et_pb_line_break_holder] --> regions of the protein are presented in <a href="#fig1">Figures 1</a> and <a href="#fig2">2</a>.<!-- [et_pb_line_break_holder] --> As a tumor suppressor, P53 is essential for preventing<!-- [et_pb_line_break_holder] --> inappropriate cell proliferation and maintaining<!-- [et_pb_line_break_holder] --> the integrity of the genome after genotoxic stress.<!-- [et_pb_line_break_holder] --> Intracellular and extracellular stimuli such as DNA<!-- [et_pb_line_break_holder] --> damage (including UV radiation, cytotoxic drugs,<!-- [et_pb_line_break_holder] --> therapeutic chemical agents, and viruses), thermal<!-- [et_pb_line_break_holder] --> shock, hypoxia, and oncogenic overexpression activate<!-- [et_pb_line_break_holder] --> P53 protein as a regulatory mechanism to induce<!-- [et_pb_line_break_holder] --> various biological responses (Bai and Zhu, 2006).<!-- [et_pb_line_break_holder] --> Activation of P53 involves an increase in its protein level<!-- [et_pb_line_break_holder] --> as well as qualitative changes through a broad posttranslational<!-- [et_pb_line_break_holder] --> modification, which results in activation<!-- [et_pb_line_break_holder] --> of the P53-target gene complex; in this way, it acts as<!-- [et_pb_line_break_holder] --> a sequence-specific transcription factor and regulates<!-- [et_pb_line_break_holder] --> the expression of different genes that modulate various<!-- [et_pb_line_break_holder] --> cellular processes in response to different types of stress.<!-- [et_pb_line_break_holder] --> The genes activated by P53 are functionally diverse and<!-- [et_pb_line_break_holder] --> participate in responses such as cell cycle control, cell<!-- [et_pb_line_break_holder] --> survival, apoptosis, and senescence (Joerger, 2008).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> In this context, the P53 protein can stop the cell cycle<!-- [et_pb_line_break_holder] -->in phases G1 and G2 to provide additional time for cells to<!-- [et_pb_line_break_holder] -->repair damage to the genome before entering the critical<!-- [et_pb_line_break_holder] -->stages of DNA synthesis and mitosis. In the P53 signaling<!-- [et_pb_line_break_holder] -->pathway in G1 (<a href="#fig3">Figure 3</a>), P21 protein blocks the cell cycle<!-- [et_pb_line_break_holder] -->in the G1-S transition, joining the cyclin-CDK complexes<!-- [et_pb_line_break_holder] -->(cyclin D/CDK4 and cyclin E/CDK2) responsible for<!-- [et_pb_line_break_holder] -->driving the cell to the S-phase and avoiding activation<!-- [et_pb_line_break_holder] -->of the transcription factor of the E2F family (elongation<!-- [et_pb_line_break_holder] -->factor 2). By inhibiting the complexes, phosphorylation<!-- [et_pb_line_break_holder] -->of RB (protein of retinoblastoma) is prevented; since<!-- [et_pb_line_break_holder] -->this protein is necessary to start the S-phase, this blocks<!-- [et_pb_line_break_holder] --> the progression of the cell cycle (Tomoak <em>et al</em>., 2001;<!-- [et_pb_line_break_holder] --> Ballesteros <em>et al</em>., 2007). The genes involved in stopping<!-- [et_pb_line_break_holder] --> the cycle in G2 are the <em>REPRIMO </em>and <em>14-3-3s</em>, members<!-- [et_pb_line_break_holder] --> of a family of structural proteins. These genes sequester<!-- [et_pb_line_break_holder] --> the cyclin B1-CDK1 complex outside the nucleus, which<!-- [et_pb_line_break_holder] --> maintains the blockade in G2 Ballesteros <em>et al.</em>, 2007;<!-- [et_pb_line_break_holder] --> Saavedra, 2015). </font></p><!-- [et_pb_line_break_holder] --><p><a name="fig3" id="fig3"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><strong><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a03fig3.jpg" width="555" height="308" /><br /><!-- [et_pb_line_break_holder] --> Figure 3. </strong>Scheme of signaling pathways of the p53 protein. Taken from the KEGG database assembled by the Keneshisa laboratory.<!-- [et_pb_line_break_holder] --> Reworked in, Cell Designer 4.4 of System Biology Institute (Funahashi <em>et al., </em>2003). The inclusion of virus, bacteria, fungi, epigenesis,<!-- [et_pb_line_break_holder] --> micRNA, unknown gene (?) and its pathway to cell senescence, tumor suppressor target are original of this article and is not found in<!-- [et_pb_line_break_holder] -->the KEGG database, which is supported by current publications (Bhardwaj <em>et al. </em>, 2015; Yang & Lu, 2015).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">The <em>14-3-3s </em>protein interacts with CDKs<!-- [et_pb_line_break_holder] --> and can inhibit their activity to block the progression of<!-- [et_pb_line_break_holder] --> the cell cycle; likewise, it regulates P53 and functionally<!-- [et_pb_line_break_holder] --> increases its stability and reinforces its transcriptional<!-- [et_pb_line_break_holder] --> activity (Zhang 2004). By contrast, the protein encoded<!-- [et_pb_line_break_holder] --> by the target gene <em>GADD45 </em>interacts with the CDC2<!-- [et_pb_line_break_holder] --> protein to block its kinase activity through the inhibitory<!-- [et_pb_line_break_holder] --> domain located in the central region of the protein<!-- [et_pb_line_break_holder] --> (amino acids 65–84) that substantially contributes to<!-- [et_pb_line_break_holder] --> the suppression of growth, thereby inducing arrest of<!-- [et_pb_line_break_holder] --> the cell cycle (Saavedra, 2015).<!-- [et_pb_line_break_holder] --> As a guardian of the genome, P53 monitors cellular<!-- [et_pb_line_break_holder] --> stress and, in tissues where stress can generate severe<!-- [et_pb_line_break_holder] --> and irreparable damage, P53 can initiate apoptosis to<!-- [et_pb_line_break_holder] --> eliminate damaged cells (Joerger, 2008; Harris, 1996)<!-- [et_pb_line_break_holder] --> (<a href="#fig3">Figure 3</a>). The intrinsic or mitochondrial pathway<!-- [et_pb_line_break_holder] --> of apoptosis is activated in response to DNA damage,<!-- [et_pb_line_break_holder] --> a defective cell cycle, hypoxia, or other severe stress<!-- [et_pb_line_break_holder] --> environments and is characterized by the release of proapoptotic<!-- [et_pb_line_break_holder] --> molecules such as cytochrome C. The pathway<!-- [et_pb_line_break_holder] --> is tightly regulated by a group of pro-apoptotic specifictissue<!-- [et_pb_line_break_holder] --> proteins, including BAX, NOXA, and PUMA, that<!-- [et_pb_line_break_holder] --> act by promoting the release of cytochrome C from<!-- [et_pb_line_break_holder] --> mitochondria to the cytoplasm (Yakovlev, 2004). After<!-- [et_pb_line_break_holder] --> cytochrome C is released, it interacts with the activating<!-- [et_pb_line_break_holder] --> factor of apoptosis activating proteases (APAF-1), which<!-- [et_pb_line_break_holder] --> is also regulated by P53, to initiate a proteolysis cascade<!-- [et_pb_line_break_holder] --> by proteins caspase (Rojas, 2009). <br /><!-- [et_pb_line_break_holder] --> Next, together with<!-- [et_pb_line_break_holder] --> other mitochondrial proteins like SMAC/DIABLO that<!-- [et_pb_line_break_holder] --> bind apoptosis inhibitory proteins (IAPs), it neutralizes<!-- [et_pb_line_break_holder] --> their antiapoptotic activity, triggering a process of DNA<!-- [et_pb_line_break_holder] --> fragmentation and cellular disorganization that leads to<!-- [et_pb_line_break_holder] --> the death of the affected cell (Adrain and Creagh, 2001).<!-- [et_pb_line_break_holder] --> An alternative route through which P53 induces<!-- [et_pb_line_break_holder] --> apoptosis via mitochondria is the activation of the<!-- [et_pb_line_break_holder] --> expression of genes involved in increasing levels of<!-- [et_pb_line_break_holder] --> reactive oxygen species like PIG3, an oxidoreductase<!-- [et_pb_line_break_holder] --> enzyme that generates reactive oxygen species and<!-- [et_pb_line_break_holder] --> whose expression is involved in the induction of<!-- [et_pb_line_break_holder] --> apoptosis (Lee <em>et al</em>, 2010). By contrast, the extrinsic<!-- [et_pb_line_break_holder] --> pathway, which promotes the sensitization of cells<!-- [et_pb_line_break_holder] --> against signs of death, induces the expression of specific<!-- [et_pb_line_break_holder] --> death receptors independently of the mitochondrial or<!-- [et_pb_line_break_holder] --> intrinsic pathway; these death receptors include the<!-- [et_pb_line_break_holder] --> FAS/APO-1/CD95 receptor and KILLER/DR5 receiver.<!-- [et_pb_line_break_holder] --> The P53 protein also induces expression of the growth<!-- [et_pb_line_break_holder] --> factor-3 interaction protein IGF1 (IGF1-BP3) that can<!-- [et_pb_line_break_holder] --> bind to IGF-1 and IGF-2 (growth factors) and prevent its<!-- [et_pb_line_break_holder] --> access to the IGFR1 receptor, thereby blocking signals<!-- [et_pb_line_break_holder] --> from survival (Rojas, 2009).<!-- [et_pb_line_break_holder] --> In addition to the above-described functions, P53<!-- [et_pb_line_break_holder] --> mediates DNA repair processes and damage prevention<!-- [et_pb_line_break_holder] --> through regulation of GADD45, P48, and DNA<!-- [et_pb_line_break_holder] --> polymerase B (Uramoto <em>et al</em>., 2006). GADD45 plays<!-- [et_pb_line_break_holder] --> an important role in binding to damaged DNA and, in<!-- [et_pb_line_break_holder] --> this way, makes it available to the repair machinery. In<!-- [et_pb_line_break_holder] --> addition, its binding to PCN -a nuclear antigen of cells<!-- [et_pb_line_break_holder] --> under repair, the subunit of DNA polymerase D- has<!-- [et_pb_line_break_holder] --> been described, causing inhibition in DNA synthesis.<!-- [et_pb_line_break_holder] --> P53 also regulates transcription of the <em>P53R2 </em>gene,<!-- [et_pb_line_break_holder] --> which plays a crucial role in DNA repair after DNA<!-- [et_pb_line_break_holder] --> damage and encodes a small subunit of ribonucleotide<!-- [et_pb_line_break_holder] --> reductase (RNR). This ribonucleotide reductase enzyme<!-- [et_pb_line_break_holder] --> catalyzes the reduction of ribonucleotides diphosphate<!-- [et_pb_line_break_holder] --> to the corresponding deoxyribonucleoside diphosphate,<!-- [et_pb_line_break_holder] --> resulting in an equilibrium of the supply of dNTPs for<!-- [et_pb_line_break_holder] --> DNA replication and repair (Uramoto <em>et al</em>., 2006).<!-- [et_pb_line_break_holder] --> Lastly, P53 participates in the signaling pathway<!-- [et_pb_line_break_holder] --> of cellular senescence (<a href="#fig3">Figure 3</a>), which comprises<!-- [et_pb_line_break_holder] --> irreversible loss of the ability to divide, initiated in<!-- [et_pb_line_break_holder] --> response to cell stress and damage. P53-induced<!-- [et_pb_line_break_holder] --> senescence is the permanent arrest of the cell cycle,<!-- [et_pb_line_break_holder] --> characterized by specific changes in gene expression. The<!-- [et_pb_line_break_holder] --> activity of P53 and its expression levels increase when<!-- [et_pb_line_break_holder] --> cells senesce. One cause of P53 activation seems to be<!-- [et_pb_line_break_holder] --> an increase in the expression of P14, a tumor suppressor<!-- [et_pb_line_break_holder] --> that stimulates P53 activity because it sequesters MDM2,<!-- [et_pb_line_break_holder] --> which facilitates the degradation of the P53 protein. In this<!-- [et_pb_line_break_holder] --> way, P14 prevents negative feedback regulation of P53 via<!-- [et_pb_line_break_holder] --> MDM2. Another potential cause of increased P53 activity<!-- [et_pb_line_break_holder] --> is the tumor suppressor of promyelocytic leukemia<!-- [et_pb_line_break_holder] --> (PML), which interacts with an acetyltransferase (CBP/<!-- [et_pb_line_break_holder] --> P300) that acetylates P53 and stimulates its activity (Bai<!-- [et_pb_line_break_holder] --> and Zhu, 2006; Joerger, 2008).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> In addition to these functions as a guardian of the<!-- [et_pb_line_break_holder] --> genome, recent studies suggest that P53 controls<!-- [et_pb_line_break_holder] --> additional processes that contribute to its primary<!-- [et_pb_line_break_holder] --> function. Among these, P53 can modulate autophagy,<!-- [et_pb_line_break_holder] --> alter metabolism, repress pluripotency and cell<!-- [et_pb_line_break_holder] --> plasticity, and facilitate a form of iron-dependent cell<!-- [et_pb_line_break_holder] --> death known as ferroptosis. The variety of P53 functions<!-- [et_pb_line_break_holder] --> is anchored to its ability to control a large set of target<!-- [et_pb_line_break_holder] --> genes (Kastenhuber and Lowe, 2017).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Cellular metabolism is controlled by P53 and is currently<!-- [et_pb_line_break_holder] --> a focus of growing research interest. The set of metabolic<!-- [et_pb_line_break_holder] --> target genes controlled by P53 affects many individual<!-- [et_pb_line_break_holder] --> processes; it has been reported that P53 increases<!-- [et_pb_line_break_holder] --> catabolism of glutamine, supports antioxidant activity,<!-- [et_pb_line_break_holder] --> decreases lipid synthesis, increases oxidation of fatty<!-- [et_pb_line_break_holder] --> acids, and stimulates gluconeogenesis. However, P53 may<!-- [et_pb_line_break_holder] --> have opposite effects in the same metabolic processes,<!-- [et_pb_line_break_holder] --> such as inhibiting glycolysis by attenuating glucose uptake<!-- [et_pb_line_break_holder] --> or suppressing the expression of glycolytic enzymes in<!-- [et_pb_line_break_holder] --> breast and lung cancer cells (Kastenhuber and Lowe, 2017).<!-- [et_pb_line_break_holder] --> Additionally, it has been reported that Wild-type<!-- [et_pb_line_break_holder] --> P53 negatively regulates lipid synthesis and glycolysis<!-- [et_pb_line_break_holder] --> in normal and tumor cells, and positively regulates<!-- [et_pb_line_break_holder] --> oxidative phosphorylation and lipid catabolism. A<!-- [et_pb_line_break_holder] --> polymorphism in the coding region of P53 in codon 72,<!-- [et_pb_line_break_holder] --> which codes for either proline (P72) or arginine (R72),<!-- [et_pb_line_break_holder] --> can affect the function of the protein. In response to DNA<!-- [et_pb_line_break_holder] --> damage, the P72 variant of P53 predominantly triggers<!-- [et_pb_line_break_holder] --> cell cycle arrest, whereas the R72 variant predominantly<!-- [et_pb_line_break_holder] --> induces cell death or apoptosis. Despite these differences<!-- [et_pb_line_break_holder] --> in function, the variant of codon 72 has not been<!-- [et_pb_line_break_holder] --> systematically associated with cancer susceptibility. By<!-- [et_pb_line_break_holder] --> contrast, this polymorphism is significantly associated<!-- [et_pb_line_break_holder] --> with a higher body mass index and risk of diabetes in<!-- [et_pb_line_break_holder] --> studies of humans (Gnanapradeepan <em>et al</em>., 2018).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>VARIATIONS</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Since the implementation of Sanger sequencing and<!-- [et_pb_line_break_holder] --> with the advent of NGS (Next Generation Sequencing)<!-- [et_pb_line_break_holder] --> technologies, thousands of tumors have been sequenced,<!-- [et_pb_line_break_holder] --> generating information on the prevalence and kind of<!-- [et_pb_line_break_holder] --> TP53 mutations in various types of cancer (Bouaoun <em>et</em><!-- [et_pb_line_break_holder] --> <em>al.</em>, 2016).<!-- [et_pb_line_break_holder] --> Most mutations in TP53 occur in the central DNAbinding<!-- [et_pb_line_break_holder] --> domain and result in an inactivation of the<!-- [et_pb_line_break_holder] --> function as a transcription factor. In experimental<!-- [et_pb_line_break_holder] --> contexts, some non-synonymous mutations have been<!-- [et_pb_line_break_holder] --> associated with a dominant-negative inhibition of the<!-- [et_pb_line_break_holder] --> wild p53 protein and/or gain of oncogenic function in<!-- [et_pb_line_break_holder] --> the absence of the normal p53 protein (Quintela <em>et al.,</em><!-- [et_pb_line_break_holder] --> 2001; Donehower <em>et al.</em>, 2019). Likewise, such mutations<!-- [et_pb_line_break_holder] --> often make p53 resistant to proteolytic degradation by<!-- [et_pb_line_break_holder] --> ubiquitin ligases E3, such as MDM2, ensuring high levels<!-- [et_pb_line_break_holder] --> of stable mutant p53 protein (Donehower <em>et al.</em>, 2019).<!-- [et_pb_line_break_holder] --> Current evidence indicates that alterations of P53 at<!-- [et_pb_line_break_holder] --> the gene level occur late in the pathogenesis of cancer<!-- [et_pb_line_break_holder] --> and that the most frequent mechanism of inactivation<!-- [et_pb_line_break_holder] --> corresponds to mutation of one allele followed by loss of<!-- [et_pb_line_break_holder] --> the remaining allele through deletion on chromosome<!-- [et_pb_line_break_holder] --> band 17p (Gallego <em>et al</em>., 2010; Donehower <em>et al.</em>, 2019).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Other less frequent mechanism includes mutations<!-- [et_pb_line_break_holder] --> of both TP53 alleles or mutation of one allele and<!-- [et_pb_line_break_holder] --> retention of the second wild-type allele. A homozygous<!-- [et_pb_line_break_holder] --> TP53 deletion is a rare event, possibly due to its close<!-- [et_pb_line_break_holder] --> relationship with genes essential for the cell (<em>e.g.</em>,<!-- [et_pb_line_break_holder] --> POLR2A) (Donehower <em>et al.</em>, 2019). As a result, TP53 gene<!-- [et_pb_line_break_holder] --> alterations are useful signals of many types of cancer in<!-- [et_pb_line_break_holder] --> humans (Roa <em>et al</em>., 2002). Likewise, in a recent study<!-- [et_pb_line_break_holder] --> using exome sequencing in twelve types of cancer, TP53<!-- [et_pb_line_break_holder] --> was the most frequently mutated gene in most cancer<!-- [et_pb_line_break_holder] --> types studied (Duffy <em>et al</em>., 2017).<!-- [et_pb_line_break_holder] --> In this regard, analysis of important neoplasms of<!-- [et_pb_line_break_holder] --> lung, breast, colon, stomach, and other organs indicates<!-- [et_pb_line_break_holder] --> that TP53 mutations are the most common genetic<!-- [et_pb_line_break_holder] --> abnormalities in human cancer. To date, multiple<!-- [et_pb_line_break_holder] --> variants of TP53 have been analyzed to understand<!-- [et_pb_line_break_holder] --> the molecular mechanisms of cancer initiation and<!-- [et_pb_line_break_holder] --> progression. Studies have been conducted in various<!-- [et_pb_line_break_holder] --> populations where cancer is recurrent and are initially<!-- [et_pb_line_break_holder] --> based on SNPs selection (Hao <em>et al</em>., 2013).<!-- [et_pb_line_break_holder] --> The mutations reported for TP53 gene are collected<!-- [et_pb_line_break_holder] --> in different databases. The main compendium is the<!-- [et_pb_line_break_holder] --> International Agency for Research on Cancer (IARC), which<!-- [et_pb_line_break_holder] --> includes three types of data: somatic mutations, germline<!-- [et_pb_line_break_holder] --> mutations, and polymorphisms. Importantly, it has been<!-- [et_pb_line_break_holder] --> reported that more than 50% of human neoplasms present<!-- [et_pb_line_break_holder] --> somatic mutations in TP53, with a registry of approximately<!-- [et_pb_line_break_holder] --> 21,512 somatic mutations and 283 germline mutations in<!-- [et_pb_line_break_holder] --> all types of cancer (Oliver <em>et al.</em>, 2002; Rangel <em>et al</em>., 2006).<br /><!-- [et_pb_line_break_holder] --></font><font size="3" face="Arial, Helvetica, sans-serif">The role of somatic TP53 mutations in the steep rise in<!-- [et_pb_line_break_holder] --> cancer rates with aging has not been investigated at a<!-- [et_pb_line_break_holder] --> population level (Richarson, 2013). This relationship was<!-- [et_pb_line_break_holder] --> quantified by using the International Agency for Research<!-- [et_pb_line_break_holder] --> on Cancer (IARC) TP53 and GLOBOCAN cancer databases.<!-- [et_pb_line_break_holder] --> TP53 mutations are associated with the aging-related<!-- [et_pb_line_break_holder] --> rise in cancer incidence rates. However, preneoplastic<!-- [et_pb_line_break_holder] --> TP53 mutations do not confer a growth advantage in<!-- [et_pb_line_break_holder] --> gastric tumors and the evidence is less convincing than in<!-- [et_pb_line_break_holder] -->other types of cancer (Morgan <em>et al.</em>, 2003).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>TP53 variations databases: ClinVar</strong><br /><!-- [et_pb_line_break_holder] --> The ClinVar database is a recent initiative of the NCBI<!-- [et_pb_line_break_holder] --> (National Center for Biotechnology Information) for<!-- [et_pb_line_break_holder] --> collecting information on variants with clinical relevance<!-- [et_pb_line_break_holder] --> to support a molecular diagnosis by genotype-phenotype<!-- [et_pb_line_break_holder] --> association from real patient data. ClinVar database<!-- [et_pb_line_break_holder] --> provides a file of associations between variants of medical<!-- [et_pb_line_break_holder] --> importance and phenotypes for multiple genes, including<!-- [et_pb_line_break_holder] --> the TP53 tumor suppressor (Landrum <em>et al</em>., 2013).<!-- [et_pb_line_break_holder] --> In ClinVar, the interpretation of variation in sequences<!-- [et_pb_line_break_holder] --> depends on a classification system standardized by two<!-- [et_pb_line_break_holder] --> associations: The American College of Medical Genetics<!-- [et_pb_line_break_holder] --> and Genomics and The Association for Molecular Pathology<!-- [et_pb_line_break_holder] --> (ACMG). Currently, this system allows classification of a<!-- [et_pb_line_break_holder] --> variant as pathogenic when the molecular consequences<!-- [et_pb_line_break_holder] --> lead to a loss of function in that gene associated with a<!-- [et_pb_line_break_holder] --> certain disease (Richards <em>et al</em>., 2015).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> For the TP53 gene, 298 pathogenic mutations<!-- [et_pb_line_break_holder] --> have been reported concerning hereditary cancer,<!-- [et_pb_line_break_holder] --> predisposition to syndromes, Li-Fraumeni Syndrome,<!-- [et_pb_line_break_holder] --> adenocarcinomas, and osteosarcomas (ClinVar<!-- [et_pb_line_break_holder] --> database). Within the coding region of the gene, around<!-- [et_pb_line_break_holder] --> 60% of pathogenic mutations are concentrated in the<!-- [et_pb_line_break_holder] --> area between exons 5 and 8, affecting the DBD domain<!-- [et_pb_line_break_holder] --> involved in DNA recognition and binding. TP53 mutations<!-- [et_pb_line_break_holder] --> within the domain affect its function, particularly when<!-- [et_pb_line_break_holder] --> they occur within the so called hotspots that correspond<!-- [et_pb_line_break_holder] --> to points necessary for protein function, such as DNA<!-- [et_pb_line_break_holder] --> contact (codons 248 and 273) or stability (codons 175,<!-- [et_pb_line_break_holder] --> 249, and 282) (Petitjean <em>et al</em>., 2007) (<a href="#tab1">Table 1</a>).<!-- [et_pb_line_break_holder] --> Approximately 5% of mutations reported in exon 4<!-- [et_pb_line_break_holder] --> are involved in the PRD domain necessary for complete<!-- [et_pb_line_break_holder] --> suppressive activity of P53, which participates in the<!-- [et_pb_line_break_holder] --> induction of apoptosis (Rangel <em>et al</em>., 2006). Among<!-- [et_pb_line_break_holder] --> these, the clinical significance of mutation c.358 A>G<!-- [et_pb_line_break_holder] --> for exon 4 remains uncertain and, therefore, there is a<!-- [et_pb_line_break_holder] --> classification conflict as a pathogenic variant (<a href="#tab1">Table 1</a>).<!-- [et_pb_line_break_holder] --> Finally, around 6% of mutations are reported in exons<!-- [et_pb_line_break_holder] --> 9 and 10 of the TD domain (<a href="#tab1">Table 1</a>), which is responsible<!-- [et_pb_line_break_holder] --> for the oligomerization of P53 molecules. Variation<!-- [et_pb_line_break_holder] --> in this domain can interfere with the formation of the<!-- [et_pb_line_break_holder] --> dimer and tetramer.</font></p><!-- [et_pb_line_break_holder] --><p><a name="tab1" id="tab1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="3" face="Arial, Helvetica, sans-serif"><strong><font size="2">Table 1. </font></strong><font size="2">Information of some mutations relevant to the TP53 gene reported in the ClinVar database (https://www.ncbi.nlm.nih.gov/clinvar).</font></font><br /><!-- [et_pb_line_break_holder] --> <img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a03tab1.jpg" width="563" height="765" /><br /><!-- [et_pb_line_break_holder] --> <img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a03tab1b.jpg" width="561" height="438" /><br /><!-- [et_pb_line_break_holder] --></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Non-synonymous mutations can cause functional<!-- [et_pb_line_break_holder] --> inactivation due to the generation of truncated<!-- [et_pb_line_break_holder] --> monomers that are unable to establish the correct<!-- [et_pb_line_break_holder] --> contacts, whereas synonymous mutations can affect the<!-- [et_pb_line_break_holder] --> structure and dynamics of dimer stabilization during<!-- [et_pb_line_break_holder] --> protein formation (Castaño <em>et al</em>., 1996). Therefore, these<!-- [et_pb_line_break_holder] --> variants may be involved in the loss of P53 function in<!-- [et_pb_line_break_holder] --> malignant cells (Rangel <em>et al</em>., 2006; López, 2011).<!-- [et_pb_line_break_holder] --> Mutations in non-coding regions have not been<!-- [et_pb_line_break_holder] --> as widely studied as mutations in coding sequences<!-- [et_pb_line_break_holder] --> despite the finding that many SNPs in the TP53 gene are<!-- [et_pb_line_break_holder] --> in intronic regions (Marsh <em>et al.</em>, 2001). Variants have<!-- [et_pb_line_break_holder] --> been reported in intronic regions for TP53 as: variant<!-- [et_pb_line_break_holder] --> c.994-1G>A in intron 9, c.920-1G>A in intron 8, and<!-- [et_pb_line_break_holder] --> c. 101-2A>G in intron 10 (<a href="#tab1">Table 1</a>). These mutations<!-- [et_pb_line_break_holder] --> in non-coding regions can affect splicing sites,<!-- [et_pb_line_break_holder] --> which lead to truncated protein products or reduced<!-- [et_pb_line_break_holder] --> protein levels. The transition from A to G in intron 10,<!-- [et_pb_line_break_holder] --> which eliminates a splicing acceptor site and causes<!-- [et_pb_line_break_holder] --> a frameshift (change in reading frame), was recently<!-- [et_pb_line_break_holder] --> reported in a pediatric adrenocortical tumor (Ming <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>., 2012). It has been proposed that intronic variation<!-- [et_pb_line_break_holder] --> influences susceptibility to cancer via regulation of<!-- [et_pb_line_break_holder] --> gene expression, splicing, or mRNA stability, and these<!-- [et_pb_line_break_holder] --> polymorphisms may be in linkage disequilibrium with<!-- [et_pb_line_break_holder] --> other functional polymorphisms that could increase the<!-- [et_pb_line_break_holder] --> risk of cancer (Sprague <em>et al</em>., 2007).<br /><!-- [et_pb_line_break_holder] --> Most studies of TP53 have only examined exons<!-- [et_pb_line_break_holder] --> 5–8, in which missense mutations are most common,<!-- [et_pb_line_break_holder] --> without considering that exons 2–4 and 9–11 also<!-- [et_pb_line_break_holder] --> present many deletions and insertions. ClinVar has<!-- [et_pb_line_break_holder] --> reported 135 pathogenic deletions in the TP53 gene.<!-- [et_pb_line_break_holder] --> These deletions can cause disruptions in the reading<!-- [et_pb_line_break_holder] --> frame during translation because the number of deleted<!-- [et_pb_line_break_holder] --> nucleotides is not anmultiple of three (The sequence<!-- [et_pb_line_break_holder] --> Ontology Browser), then the sequence of amino acids<!-- [et_pb_line_break_holder] --> translated from the mutated gene changes from the<!-- [et_pb_line_break_holder] --> point of the deletion (Castaño <em>et al</em>., 1996). Of note, in Li-<!-- [et_pb_line_break_holder] --> Fraumeni syndrome, pathogenic deletions of 1 bp have<!-- [et_pb_line_break_holder] --> been reported in codons 178 and 317 (<a href="#tab1">Table 1</a>).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> To date, 46 pathogenic duplications have been<!-- [et_pb_line_break_holder] --> identified. Some duplications generate a change in the<!-- [et_pb_line_break_holder] --> reading frame during translation (frameshift variant),<!-- [et_pb_line_break_holder] --> resulting in an effect similar to that caused by deletions.<!-- [et_pb_line_break_holder] --> Other duplications constitute an intronic mutation in<!-- [et_pb_line_break_holder] --> the acceptor splicing site (splice acceptor variant). In<!-- [et_pb_line_break_holder] --> this sense, a mutation in the splicing regulatory region<!-- [et_pb_line_break_holder] --> can result in deleterious effects in the splicing process<!-- [et_pb_line_break_holder] --> of mRNA precursors (Ward <em>et al</em>., 2010), consequently<!-- [et_pb_line_break_holder] --> producing a different RNA and a non-functional protein.<!-- [et_pb_line_break_holder] --> Of note, in addition to the duplications, pathogenic<!-- [et_pb_line_break_holder] --> insertions in ovarian neoplasms and hereditary cancer<!-- [et_pb_line_break_holder] --> predisposition syndrome have been identified (<a href="#tab1">Table 1</a>).<!-- [et_pb_line_break_holder] --> Of the total of TP53 variants reported as pathogenic,<!-- [et_pb_line_break_holder] --> approximately 35% are punctual (point mutations),<!-- [et_pb_line_break_holder] --> with a single change of nucleotide base. Concerning the<!-- [et_pb_line_break_holder] --> known molecular consequences, most of the identified<!-- [et_pb_line_break_holder] --> point mutations result in a unique amino acid change<!-- [et_pb_line_break_holder] --> that typically alters the binding of P53 to DNA. These<!-- [et_pb_line_break_holder] --> missense mutations inactivate the gene protein product<!-- [et_pb_line_break_holder] --> by not allowing its binding to DNA, making it incapable<!-- [et_pb_line_break_holder] --> of activating its target genes (Rangel <em>et al</em>., 2006).<!-- [et_pb_line_break_holder] --> Additionally, a smaller percentage of TP53 variants<!-- [et_pb_line_break_holder] --> correspond to nonsense mutations, <em>i.e.</em>, the substitution<!-- [et_pb_line_break_holder] --> of one base for another that gives rise to a stop codon,<!-- [et_pb_line_break_holder] --> causing premature termination of protein synthesis<!-- [et_pb_line_break_holder] --> and, consequently, the formation of a protein truncated<!-- [et_pb_line_break_holder] --> at the point of mutation. Studies have noted that the<!-- [et_pb_line_break_holder] --> variation c.637C>T in codon 213 (Arg213Ter) is the<!-- [et_pb_line_break_holder] --> most frequent nonsense mutation in various cancers,<!-- [et_pb_line_break_holder] --> including colorectal (41% of all nonsense mutations),<!-- [et_pb_line_break_holder] --> gastric (33%), and breast cancer (21%), because codon<!-- [et_pb_line_break_holder] --> 213, which consists of a CpG dinucleotide, is the main<!-- [et_pb_line_break_holder] --> methylation target and the nonsense mutation results<!-- [et_pb_line_break_holder] --> in the endogenous deamination of 5-methylcytosine to<!-- [et_pb_line_break_holder] --> thymine. It has been suggested that this dinucleotide,<!-- [et_pb_line_break_holder] --> besides being an endogenous pro-mutagenic factor,<!-- [et_pb_line_break_holder] --> could be a preferential target for exogenous carcinogenic<!-- [et_pb_line_break_holder] --> chemicals (Shuyer <em>et al</em>., 1998).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> In summary, the variants reported here demonstrate<!-- [et_pb_line_break_holder] --> that access to knowledge and interpretation of<!-- [et_pb_line_break_holder] --> variants of clinical importance are relevant to a better<!-- [et_pb_line_break_holder] --> understanding of diseases. The current research<!-- [et_pb_line_break_holder] --> focused on identification of biomarkers is intended to<!-- [et_pb_line_break_holder] --> improve molecular knowledge about the specific cellular<!-- [et_pb_line_break_holder] --> mechanisms that cause or drive tumor transformation<!-- [et_pb_line_break_holder] --> within the enormous complexity of cancer. Important<!-- [et_pb_line_break_holder] --> variations in the TP53 tumor suppression gene have<!-- [et_pb_line_break_holder] --> been identified in humans and their patterns can show<!-- [et_pb_line_break_holder] --> great differences not only between tumor types but also<!-- [et_pb_line_break_holder] --> between different populations depending on genetic<!-- [et_pb_line_break_holder] --> variability and environmental factors (Vaiva <em>et al</em>., 2009).<!-- [et_pb_line_break_holder] --> Among these variants, those identified as pathogenic<!-- [et_pb_line_break_holder] --> typically result in a single amino acid change that alters<!-- [et_pb_line_break_holder] --> the binding of P53 to DNA, induce a change in the reading<!-- [et_pb_line_break_holder] --> frame (frameshift), or cause premature interruption of<!-- [et_pb_line_break_holder] --> translation leading to inactivation of the protein.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>P53 variations databases: Uniprot</strong><br /><!-- [et_pb_line_break_holder] --> According to the Universal Protein Resource (UniProt)<!-- [et_pb_line_break_holder] --> database, a total of 1363 variants have been reported<!-- [et_pb_line_break_holder] --> for the TP53 gene. In UniProt, TP53 variants associated<!-- [et_pb_line_break_holder] --> with a disease are described by the amino acid change,<!-- [et_pb_line_break_holder] --> the abbreviation of the associated disease, the effect<!-- [et_pb_line_break_holder] --> (s) of the variation on the protein, and the cell and/or<!-- [et_pb_line_break_holder] --> organism if known (<a href="#tab2">Table 2</a>). It should be noted that<!-- [et_pb_line_break_holder] --> polymorphisms associated with human diseases have<!-- [et_pb_line_break_holder] --> been validated in the dbSNP NCBI database. However,<!-- [et_pb_line_break_holder] --> polymorphisms of a single amino acid caused by a<!-- [et_pb_line_break_holder] --> change of a single nucleotide are relatively rare and have<!-- [et_pb_line_break_holder] --> very low frequencies to be reported in the dbSNP.<!-- [et_pb_line_break_holder] --> Variation in TP53 occurs in conditions like Barrett’s<!-- [et_pb_line_break_holder] --> metaplasia, in which the stratified squamous epithelium<!-- [et_pb_line_break_holder] --> normally in the lower part of the esophagus is replaced<!-- [et_pb_line_break_holder] --> by a metaplastic columnar epithelium. This condition<!-- [et_pb_line_break_holder] --> develops as a complication in approximately 10%<!-- [et_pb_line_break_holder] --> of patients with chronic gastroesophageal reflux<!-- [et_pb_line_break_holder] --> disease and predisposes patients to the development<!-- [et_pb_line_break_holder] --> of esophageal adenocarcinoma. In addition, TP53<!-- [et_pb_line_break_holder] --> variants have been reported in Li-Fraumeni Syndrome<!-- [et_pb_line_break_holder] --> (LFS), a hereditary, autosomal dominant disorder that<!-- [et_pb_line_break_holder] --> predisposes patients to cancer.<!-- [et_pb_line_break_holder] --> Four types of cancer represent 80% of tumors<!-- [et_pb_line_break_holder] --> occurring in carriers of a TP53 germline mutation,<!-- [et_pb_line_break_holder] --> namely breast cancer, bone and soft tissue sarcomas,<!-- [et_pb_line_break_holder] --> brain tumors, and adrenocortical carcinomas. Less<!-- [et_pb_line_break_holder] --> common tumors include papilloma and choroidal plexus<!-- [et_pb_line_break_holder] --> carcinoma before age 15; rhabdomyosarcoma before age<!-- [et_pb_line_break_holder] --> 5; and leukemia, Wilms’ tumor, malignant phyllode<!-- [et_pb_line_break_holder] --> tumor, colorectal cancer, and gastric cancer (<a href="#tab2">Table 2</a>).<!-- [et_pb_line_break_holder] --> Under normal conditions, P53 protein is expressed<!-- [et_pb_line_break_holder] --> at low levels. However, the P53 pathway is activated<!-- [et_pb_line_break_holder] --> by any stress that alters the progression of the normal<!-- [et_pb_line_break_holder] --> cell cycle or induces mutations to the genome leading<!-- [et_pb_line_break_holder] --> to the transformation of a normal cell into a cancer<!-- [et_pb_line_break_holder] --> cell (Bourdon, 2007). Therefore, P53 is considered to<!-- [et_pb_line_break_holder] --> play an important role in maintaining the integrity of<!-- [et_pb_line_break_holder] --> the genome; hence, loss of P53 function would allow<!-- [et_pb_line_break_holder] --> the survival of genetically damaged cellular elements,<!-- [et_pb_line_break_holder] --> eventually leading to tumor cell transformation (Rangel<!-- [et_pb_line_break_holder] --> <em>et al</em>., 2006).<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><a name="tab2" id="tab2"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><strong>Table 2. </strong>Most important mutations by position (amino acid substitutions) reported in UniProt database (<a href="https://www.uniprot.org/uniprot/" target="_blank">https://www.uniprot.org/uniprot/</a>) for the p53<!-- [et_pb_line_break_holder] -->gene associated with a disease.</font><br /><!-- [et_pb_line_break_holder] --><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a03tab2.jpg" width="557" height="747" /><br /><!-- [et_pb_line_break_holder] --><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a03tab2b.jpg" width="565" height="726" /><br /><!-- [et_pb_line_break_holder] --></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"> Two general types of P53 mutations have been<!-- [et_pb_line_break_holder] --> described: contact and conformational. The contact<!-- [et_pb_line_break_holder] --> mutation proteins largely maintain the conformation of<!-- [et_pb_line_break_holder] --> the wild-type folded protein, since the specific residues<!-- [et_pb_line_break_holder] --> that are mutated are unable to bind to P53-specific<!-- [et_pb_line_break_holder] --> DNA promoter sites. The conformational mutations<!-- [et_pb_line_break_holder] --> (also known as structural mutations) cause protein<!-- [et_pb_line_break_holder] --> destabilization, decrease its melting temperature, and<!-- [et_pb_line_break_holder] --> decrease deployment at physiological temperatures.<!-- [et_pb_line_break_holder] --> Mutations in P53 may result in the loss of its function as<!-- [et_pb_line_break_holder] --> a tumor suppressor or an increase in oncogenic activity<!-- [et_pb_line_break_holder] --> (Duffy <em>et al</em>., 2017).<!-- [et_pb_line_break_holder] --> Current evidence indicates that alterations of P53 at<!-- [et_pb_line_break_holder] --> the gene level occur late in the pathogenesis of cancer<!-- [et_pb_line_break_holder] --> and that the most frequent mechanism of inactivation<!-- [et_pb_line_break_holder] --> corresponds to mutation of one allele followed by the<!-- [et_pb_line_break_holder] --> deletion of the remaining allele (Gallego <em>et al</em>., 2010). As<!-- [et_pb_line_break_holder] --> a result, TP53 gene alterations are useful signals of many<!-- [et_pb_line_break_holder] --> types of cancer in humans (Roa <em>et al</em>., 2002). Likewise, in<!-- [et_pb_line_break_holder] --> a recent study using exome sequencing in twelve types<!-- [et_pb_line_break_holder] --> of cancer, P53 was the most frequently mutated gene in<!-- [et_pb_line_break_holder] --> most cancer types studied (Duffy <em>et al</em>., 2017).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>PERSPECTIVES IN TREATMENT</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Currently, with the rise of next-generation sequencing<!-- [et_pb_line_break_holder] --> and high throughput proteomics mass spectrometry,<!-- [et_pb_line_break_holder] --> the study of different types of cancer has allowed the<!-- [et_pb_line_break_holder] --> characterization of a series of mutations as potential<!-- [et_pb_line_break_holder] --> drivers in the development of this pathology. Among the<!-- [et_pb_line_break_holder] --> mutated genes in cancer, TP53 hosts variants that occur<!-- [et_pb_line_break_holder] --> with a high frequency.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> From a therapeutic perspective, the goal is looking for<!-- [et_pb_line_break_holder] -->the mutant P53 protein to be the target of treatments.<!-- [et_pb_line_break_holder] -->However, the fact that mutants are diverse in form and<!-- [et_pb_line_break_holder] -->function means that therapies must be directed with<!-- [et_pb_line_break_holder] -->a large number of molecules that are selective to the<!-- [et_pb_line_break_holder] -->various mutants of P53 and in turn do not affect the<!-- [et_pb_line_break_holder] -->functioning of the wild form, a fact that has made difficult<!-- [et_pb_line_break_holder] -->the application or successful outcome of treatments. In<!-- [et_pb_line_break_holder] -->this sense, recently small interference RNAs (siRNAs)<!-- [et_pb_line_break_holder] -->have been developed for many targets that can silence<!-- [et_pb_line_break_holder] -->the expression of the mutated protein satisfactorily and<!-- [et_pb_line_break_holder] -->that are also selective for a single nucleotide, so that<!-- [et_pb_line_break_holder] -->they can be applied to multiple P53 mutants. Recently,<!-- [et_pb_line_break_holder] -->Ubby <em>et al. </em>(2019), generated specific siRNAs for four of<!-- [et_pb_line_break_holder] --> the six mutational hotspot of P53, which were able to<!-- [et_pb_line_break_holder] --> silence only the mutant alleles without having an impact<!-- [et_pb_line_break_holder] --> on the expression of the wild protein, representing an<!-- [et_pb_line_break_holder] --> important advance in the treatment of around 10% of all<!-- [et_pb_line_break_holder] --> types of cancer and highlighting the importance of the<!-- [et_pb_line_break_holder] --> identification of variants in this gene. Recently <em>in vitro</em><!-- [et_pb_line_break_holder] --> hPSC stem cells line engineering with stable integration<!-- [et_pb_line_break_holder] --> of CRISPR/Cas9 (Ihry <em>et al</em>., 2018) found that the lethal<!-- [et_pb_line_break_holder] --> response to that double-strand breaks was <em>P53/TP53</em><!-- [et_pb_line_break_holder] --> dependent, such that the efficiency of precise genome<!-- [et_pb_line_break_holder] --> engineering in hPSCs with a wild-type P53 gene was<!-- [et_pb_line_break_holder] --> severely reduced. The results of Ihry <em>et al. </em>(2018) indicate<!-- [et_pb_line_break_holder] --> that Cas9 toxicity creates an obstacle to the highthroughput<!-- [et_pb_line_break_holder] --> use of CRISPR/Cas9 for genome engineering<!-- [et_pb_line_break_holder] --> and screening in these stem cells. The new small<!-- [et_pb_line_break_holder] --> interference RNAs (siRNAs) and CRISPR/Cas9 therapy<!-- [et_pb_line_break_holder] --> tools scenario is still a challenge, and new discoveries<!-- [et_pb_line_break_holder] --> are expected for the development of this urgent therapy.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong><font size="2">ACKNOWLEDGEMENTS</font></strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">We thank Enago, an editing brand of Crimson<!-- [et_pb_line_break_holder] --> Interactive Inc. that edited sintaxis and spelling<!-- [et_pb_line_break_holder] --> in American English. </font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>REFERENCES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">1. Adrain C., Creagh E. (2001) Apoptosis-associated release of Smac/DIABLO<!-- [et_pb_line_break_holder] --> from mitochondria requires active caspases and is blocked by Bcl-2.<!-- [et_pb_line_break_holder] --> EMBO J. 20 (23): 6627-6636.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 2. Alpízar W., Sierra R., Cuenca P., Une C., Mena F., Pérez G. (2005) Asociación<!-- [et_pb_line_break_holder] --> del polimorfismo del codón 72 del gen p53 con el riesgo de cáncer<!-- [et_pb_line_break_holder] --> gástrico en una población de alto riesgo de Costa Rica. Rev. Biol. Trop.<!-- [et_pb_line_break_holder] --> 53 (3-4): 317-324.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 3. Audrezet M.P., Robaszkiewicz M., Mercier B., Nousbaum J.B., Hardy<!-- [et_pb_line_break_holder] --> E., Bail J.P. (1996) Molecular analysis of the TP53 gene in Barrett’s<!-- [et_pb_line_break_holder] --> adenocarcinoma. Hum. Mutat. 7: 109-113.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 4. Azuma K., Shichijo S., Itoh K. (2002) Identification of a tumor-rejection<!-- [et_pb_line_break_holder] --> antigen recognized by HLA-B46 restricted CTL. Submitted (MAR-<!-- [et_pb_line_break_holder] --> 2002) to the EMBL/GenBank/DDBJ databases.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 5. Bai L. and Zhu W. (2006) p53: Structure, Function and therapeutic<!-- [et_pb_line_break_holder] --> applications. J. Cancer Mol. 2 (4): 141-153.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 6. Ballesteros D., González P., Riascos M., Zambrano H. (2007) Protein p53:<!-- [et_pb_line_break_holder] --> Signaling Pathways and Role in Carcinogenesis: a Review Rev. Cir.<!-- [et_pb_line_break_holder] --> Traumatol. Buco-Maxilo-Fac. 7 (2): 37-54.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 7. Bartek J., Iggo R., Gannon J., Lane D.P. (1990) Genetic and immunochemical<!-- [et_pb_line_break_holder] --> analysis of mutant p53 in human breast cancer cell lines. Oncogene 5:<!-- [et_pb_line_break_holder] --> 893-899.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 8. Bhardwaj J.M., Wei J., Andl C., El-Rifai W., Peek R.M., Zaika A.I. (2015)<!-- [et_pb_line_break_holder] --> Helicobacter pylori bacteria alter the p53 stress response via Erk-<!-- [et_pb_line_break_holder] --> HDM2 pathway. Oncotarget 6 (3): 1531.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 9. Bouaoun L., Sonkin D., Ardin M., Hollstein M., Byrnes G. (2016) TP53<!-- [et_pb_line_break_holder] --> Variations in Human Cancers: New Lessons from the IARC TP53<!-- [et_pb_line_break_holder] --> Database and Genomics Data. Human Mutation 37 (9): 865-876.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 10. Bourdon J.C. (2007) p53 and its isoforms in cancer. Br. J. Cancer 97: 277-<!-- [et_pb_line_break_holder] --> 282.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 11. Caamano J., Zhang S.Y., Rosvold E.A., Bauer B., Klein-Szanto A.J. (1993)<!-- [et_pb_line_break_holder] --> p53 alterations in human squamous cell carcinomas and carcinoma cell<!-- [et_pb_line_break_holder] --> lines. Am. J. Pathol. 142: 1131-1139.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 12. Casson A.G., Mukhopadhyay T., Cleary K.R., Ro J.Y., Levin B., Roth J.A.<!-- [et_pb_line_break_holder] --> (1991) p53 gene mutations in Barrett’s epithelium and esophageal<!-- [et_pb_line_break_holder] --> cancer. Cancer Res. 51: 4495-4499.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 13. Castaño L., Bilbao J.R., Urrutia I. (1996) Introducción a la biología molecular<!-- [et_pb_line_break_holder] --> y aplicación a la pediatría (2): Purificación de ácidos nucleicos. An. Esp.<!-- [et_pb_line_break_holder] --> Pediatr. 45: 541-546.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 14. Chanock S.J., Burdett L., Yeager M., Llaca V., Langeroed A., Presswalla S.<!-- [et_pb_line_break_holder] --> (2007) Somatic sequence alterations in twenty-one genes selected by<!-- [et_pb_line_break_holder] --> expression profile analysis of breast carcinomas. Breast Cancer Res. 9:<!-- [et_pb_line_break_holder] --> R5 (doi:10.1186/bcr1637).</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 15. Chehab N.H., Malikzay A., Stavridi E.S., Halazonetis T.D. (1999)<!-- [et_pb_line_break_holder] --> Phosphorylation of Ser-20 mediates stabilization of human p53 in<!-- [et_pb_line_break_holder] --> response to DNA damage. Proc. Natl. Acad. Sci. USA 96: 13777-13782.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 16. ClinVar. URL: <a href="http://www.ncbi.nlm.nih.gov/clinvar/" target="_blank">http://www.ncbi.nlm.nih.gov/clinvar/</a> [26-06-2016]<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">17. Das S., Raj L., Zhao B., Kimura Y., Bernstein A., Aaronson S.A., Lee<!-- [et_pb_line_break_holder] --> S.W. (2007) Hzf Determines cell survival upon genotoxic stress by<!-- [et_pb_line_break_holder] --> modulating p53 transactivation. Cell 130: 624-637.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 18. Donehower L., Soussi T., Korkut A., Weinstein J., Akbani R., Wheeler D. (2019) Integrated Analysis of TP53 Gene and Pathway Alterations in The<!-- [et_pb_line_break_holder] --> Cancer Genome Atlas. Cell Reports 28: 1370-1384.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 19</font><font size="2" face="Arial, Helvetica, sans-serif">. Duffy M., Synnott N.C., Crown J. (2017) Mutant p53 as a target for cancer<!-- [et_pb_line_break_holder] -->treatment. Eur. J. Cancer 83: 258-265.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 20. Felix C.A., Nau M.M., Takahashi T., Mitsudomi T., Chiba I., Poplack D.G.<!-- [et_pb_line_break_holder] --> (1992) Hereditary and acquired p53 gene mutations in childhood acute<!-- [et_pb_line_break_holder] --> lymphoblastic leukemia. J. Clin. Invest. 89: 640-647.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 21. Frebourg T., Barbier N., Yan Y., Garber J.E., Dreyfus M., Fraumeni J.F.<!-- [et_pb_line_break_holder] --> (1995) Germ-line p53 mutations in 15 families with Li-Fraumeni<!-- [et_pb_line_break_holder] --> syndrome. Am. J. Hum. Genet. 56: 608-615.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 22. Funahashi A., Tanimura N., Morohashi M., Kitano H. (2003) Cell Designer:<!-- [et_pb_line_break_holder] --> a process diagram editor for gene-regulatory and biochemical<!-- [et_pb_line_break_holder] --> networks. BIOSILICO 1: 159-162.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">23. Gallego R., Pinazo M.D., & Serrano M. (2010)<!-- [et_pb_line_break_holder] --> El ciclo celular y el gen p53: Aproximación<!-- [et_pb_line_break_holder] --> a la oftalmología molecular. Arch. Soc. Esp.<!-- [et_pb_line_break_holder] --> Oftalmol. 85 (7): 229-231.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 24. Gnanapradeepan K., Basu S., Barnoud T.,<!-- [et_pb_line_break_holder] --> Budina-Kolomets A., Kung C., Murphy M.E.<!-- [et_pb_line_break_holder] --> (2018) The p53 Tumor Suppressor in the<!-- [et_pb_line_break_holder] --> Control of Metabolism and Ferroptosis. Front.<!-- [et_pb_line_break_holder] --> Endocrinol. 9: 124.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 25. GLOBOCAN (Globo Cancer Obsevatory) <a href="https://gco.iarc.fr/" target="_blank">https://gco.iarc.fr/</a> [12-06-2017]</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 26. Gueran S., Tunca Y., Imirzalioglu N. (1999)<!-- [et_pb_line_break_holder] --> Hereditary TP53 codon 292 and somatic<!-- [et_pb_line_break_holder] --> P16INK4A codon 94 mutations in a Li-<!-- [et_pb_line_break_holder] --> Fraumeni syndrome family. Cancer Genet.<!-- [et_pb_line_break_holder] --> Cytogenet. 113: 145-151.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 27. Hao X.D., Yang Y., Song X., Zhao X.K., Wang L.D.,<!-- [et_pb_line_break_holder] --> He J.D. (2013) Correlation of telomere lenght<!-- [et_pb_line_break_holder] --> shortening with TP53 somatic mutations,<!-- [et_pb_line_break_holder] --> polymorphisms and allelic loss in breast<!-- [et_pb_line_break_holder] --> tumors and esophageal cáncer. Oncol. Rep. 29<!-- [et_pb_line_break_holder] --> (1): 226-236.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 28. Harris C.C. (1996) Structure and function of the<!-- [et_pb_line_break_holder] --> p53 tumor supresor gene: clues for rational<!-- [et_pb_line_break_holder] --> cáncer therapeutic strategies. J. Natl. Cancer<!-- [et_pb_line_break_holder] --> Ins. 88 (20): 1442-1445.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 29. Herrera J.C., Isaza L.F., Ramírez J.L., Vásquez<!-- [et_pb_line_break_holder] --> G., Muñeton C.M. (2010) Detección de<!-- [et_pb_line_break_holder] --> aneuploidías del cromosoma 17 y deleción<!-- [et_pb_line_break_holder] --> del gen TP53 en una amplia variedad de<!-- [et_pb_line_break_holder] --> tumores sólidos mediante hibridación in situ<!-- [et_pb_line_break_holder] --> fluorescente bicolor. Biomédica 30 (3): 390-<!-- [et_pb_line_break_holder] --> 400.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 30. Hollstein M.C., Metcalf R.A., Welsh J.A.,<!-- [et_pb_line_break_holder] --> Montesano R., Harris C.C. (1990) Frequent<!-- [et_pb_line_break_holder] --> mutation of the p53 gene in human<!-- [et_pb_line_break_holder] --> esophageal cancer. Proc. Natl. Acad. Sci. USA<!-- [et_pb_line_break_holder] --> 87: 9958-9961.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 31. IARC TP53 Database (2016) URL: <a href="http://p53.iarc.fr/" target="_blank">http://p53.iarc.fr/</a> [12-06-2017]</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 32. Ihry R.J., Worringer K.A., Salick M.R., Frias E.,<!-- [et_pb_line_break_holder] --> Ho D., Theriault K., Kommineni S., Chen J.,<!-- [et_pb_line_break_holder] --> Sondey M., Ye C., Randhawa R., Kulkarni T.,<!-- [et_pb_line_break_holder] --> Yang Z., McAllister G., Russ C., Reece-Hoyes<!-- [et_pb_line_break_holder] --> J., Forrester W., Hoffman G.R., Dolmetsch<!-- [et_pb_line_break_holder] --> R., Kaykas A., Randhawa R. (2018) p53<!-- [et_pb_line_break_holder] --> inhibits CRISPR–Cas9 engineering in human<!-- [et_pb_line_break_holder] --> pluripotent stem cells. Nature Medicine 24<!-- [et_pb_line_break_holder] --> (7): 939.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 33. Isobe M., Emanuel B.S., Givol D., Oren M., Croce<!-- [et_pb_line_break_holder] --> C.M. (1986) Localization of gene for human<!-- [et_pb_line_break_holder] --> p53 tumour antigen to band 17p13. Nature 320<!-- [et_pb_line_break_holder] --> (6057): 84-5.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 34. Joerger A.C., Allen M.D., Fersht A.R. (2004)<!-- [et_pb_line_break_holder] --> Crystal structure of a superstable mutant of<!-- [et_pb_line_break_holder] --> human p53 core domain. Insights Structure<!-- [et_pb_line_break_holder] --> and function of p53 cancer mutants into the<!-- [et_pb_line_break_holder] --> mechanism of rescuing oncogenic mutations.<!-- [et_pb_line_break_holder] --> J. Biol. Chem. 279: 1291-1296.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 35. Joerger A.C. (2008) Structural biology of the<!-- [et_pb_line_break_holder] --> tumor suppressor p53. Annu. Rev. Biochem.<!-- [et_pb_line_break_holder] --> 77: 557-582.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 36. Kastenhuber E., Lowe S. (2017) Putting p53 in<!-- [et_pb_line_break_holder] --> Context. Cell 170: 1062-1078.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 37. Kern S.E., Kinzler K.W., Bruskin A., Jarosz D.,<!-- [et_pb_line_break_holder] --> Friedman P., Prives C., Vogelstein B. (1991)<!-- [et_pb_line_break_holder] --> Identification of p53 as a sequence-specific<!-- [et_pb_line_break_holder] --> DNA-binding protein. Science 252 (5013):<!-- [et_pb_line_break_holder] --> 1708-11.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 38. Kitayner M., Rozenberg H., Kessler N.,<!-- [et_pb_line_break_holder] --> Rabinovich D., Shaulov L., Haran T.E. (2006)<!-- [et_pb_line_break_holder] --> Structural basis of DNA recognition by p53<!-- [et_pb_line_break_holder] --> tetramers. Mol. Cell. 22 (6): 741-753.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 39. Landrum M.J., Lee J.M., Riley G.R., Jang W.,<!-- [et_pb_line_break_holder] --> Rubinstein W.S., Church D.M. (2013) ClinVar:<!-- [et_pb_line_break_holder] --> public archive of relationships among<!-- [et_pb_line_break_holder] --> sequence variation and human phenotype.<!-- [et_pb_line_break_holder] --> Nucleic Acids Res. 42 (Database): 1-6.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 40. Law J.C., Strong L.C., Chidambaram A., Ferrell<!-- [et_pb_line_break_holder] --> R.E. (1991) A germ line mutation in exon 5 of<!-- [et_pb_line_break_holder] --> the p53 gene in an extended cancer family.<!-- [et_pb_line_break_holder] --> Cancer Res. 51: 6385-6387.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 41. Lee J.H., Kang V., Jin Z.Y., Kang M.Y., Yoon Y.,<!-- [et_pb_line_break_holder] --> Hyun J.W. (2010) The p53-inducible gene 3<!-- [et_pb_line_break_holder] --> (PIG3) contributes to early cellular response<!-- [et_pb_line_break_holder] --> to DNA damage. Oncogene 29 (10): 1431-1450.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 42. Lim S.O., Kim H., Jung G. (2010) p53 inhibits<!-- [et_pb_line_break_holder] --> tumor cell invasion via the degradation of<!-- [et_pb_line_break_holder] --> snail protein in hepatocellular carcinoma.<!-- [et_pb_line_break_holder] --> FEBS Lett. 584: 2231-2236.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 43. López I. (2011) Identificación y análisis del<!-- [et_pb_line_break_holder] --> efecto de mutaciones en TP53 asociadas<!-- [et_pb_line_break_holder] --> a la patología tumoral. Tesis de Maestría<!-- [et_pb_line_break_holder] --> en Ciencias Biológicas. Universidad de la<!-- [et_pb_line_break_holder] --> República, Montevideo, Uruguay.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 44. Malkin D., Li F.P., Strong L.C., Fraumeni J.F.,<!-- [et_pb_line_break_holder] --> Nelson C.E., Kim D.H., Kassel J. (1990) Germ<!-- [et_pb_line_break_holder] --> line p53 mutations in a familial syndrome<!-- [et_pb_line_break_holder] --> of breast cancer, sarcomas, and other<!-- [et_pb_line_break_holder] --> neoplasms. Science 250: 1233-1238.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 45. Malkin D., Jolly K.W., Barbier N., Look A.T.,<!-- [et_pb_line_break_holder] --> Friend S.H., Gebhardt M.C. <em>et al</em>. (1992)<!-- [et_pb_line_break_holder] --> Germline mutations of the p53 tumorsuppressor<!-- [et_pb_line_break_holder] --> gene in children and young adults<!-- [et_pb_line_break_holder] --> with second malignant neoplasms. N. Engl. J.<!-- [et_pb_line_break_holder] --> Med. 326:1309-1315.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 46. Marsh A., Spurdle A., Turner B., Fereday S.,<!-- [et_pb_line_break_holder] --> Thorne H., Pupo G. (2001) The intronic<!-- [et_pb_line_break_holder] --> G13964C variant in p53 is not a highrisk<!-- [et_pb_line_break_holder] --> mutation in familial breast cancer in<!-- [et_pb_line_break_holder] --> Australia. Breast Cancer Res. 3 (5): 346-349.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 47. McBride O.W., Merry D., Givol D. (1986) The<!-- [et_pb_line_break_holder] --> gene for human p53 cellular tumor antigen is<!-- [et_pb_line_break_holder] --> located on chromosome 17 short arm (17p13).<!-- [et_pb_line_break_holder] --> Proc. Natl. Acad. Sci. USA 83 (1): 130-134.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 48. Ming F., Simeonova I., Toledo F. (2012) p53: Point<!-- [et_pb_line_break_holder] --> Mutations, SNPs and Cancer, Point Mutation.<!-- [et_pb_line_break_holder] --> In: Logie C. (Ed.) Biochemistry, Genetics and<!-- [et_pb_line_break_holder] --> Molecular Biology “Point Mutation”. InTech,<!-- [et_pb_line_break_holder] --> Rijeka, pp. 301-322.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 49. Morgan C., Jenkins G.J.S., Ashton T., Griffiths<!-- [et_pb_line_break_holder] --> A.P., Baxter J.N., Parry E.M., Parry J.M. (2003)<!-- [et_pb_line_break_holder] --> Detection of p53 mutations in precancerous<!-- [et_pb_line_break_holder] --> gastric tissue. British Journal of Cancer 89<!-- [et_pb_line_break_holder] --> (7): 1314.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 50. Nimri L.F., Owais W., Momani E. RT. (2003)<!-- [et_pb_line_break_holder] --> “Detection of P53 gene mutations and serum<!-- [et_pb_line_break_holder] --> p53 antibodies associated with cigarette<!-- [et_pb_line_break_holder] --> smoking.” Submitted (AUG-2003) to the<!-- [et_pb_line_break_holder] --> EMBL/GenBank/DDBJ databases.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 51. Olivier M., Eeles R., Hollstein M., Khan M.A.,<!-- [et_pb_line_break_holder] --> Harris C.C., Hainaut P. (2002) The IARC TP53<!-- [et_pb_line_break_holder] --> Database: Nex Online Mutation Analysis and<!-- [et_pb_line_break_holder] --> Recommendations to Users. Hum. Mutat. 19<!-- [et_pb_line_break_holder] --> (6): 607-614.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 52. Petitjean A., Mathe E., Kato S., Ishioka C.,<!-- [et_pb_line_break_holder] --> Taytigian S.V., Ahinaut P., Olivier M.<!-- [et_pb_line_break_holder] --> (2007) Impact of mutant p53 functional<!-- [et_pb_line_break_holder] --> properties on TP53 mutation patterns and<!-- [et_pb_line_break_holder] --> tumor phenotype: Lessons from recents<!-- [et_pb_line_break_holder] --> developments in the IARC TP53 Database.<!-- [et_pb_line_break_holder] --> Hum. Mutat. 28 (6): 622-629.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 53. Pettersen E.F., Goddard T.D., Huang C.C., Couch<!-- [et_pb_line_break_holder] --> G.S., Greenblatt D.M., Meng E.C., Ferrin T.E.<!-- [et_pb_line_break_holder] --> (2004) UCSF Chimera: a visualization system<!-- [et_pb_line_break_holder] --> for exploratory research and analysis. J.<!-- [et_pb_line_break_holder] --> Comput. Chem. 25 (13): 1605-12.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 54. Pierce B.A. (2009) Genética: Un enfoque<!-- [et_pb_line_break_holder] --> conceptual. 3ra ed. Editorial Médica<!-- [et_pb_line_break_holder] --> Panamericana, Madrid, España.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 55. Qin B., Minter Dykhouse K., Yu J., Zhang J., Liu<!-- [et_pb_line_break_holder] --> T., Zhang H., Lee S., Kim J., Wang L., Lou Z.<!-- [et_pb_line_break_holder] --> (2015) DBC1 functions as a tumor suppressor<!-- [et_pb_line_break_holder] --> by regulating p53 stability. Cell. Rep. 10: 1324-<!-- [et_pb_line_break_holder] -->1334.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 55. Quintela D., López J., Senra A.. La proteína p53<!-- [et_pb_line_break_holder] --> y el cáncer de mama. Revisión crítica. Rev.<!-- [et_pb_line_break_holder] --> senol. patol. mamar. (Ed. impr.). 14(2): 71-77</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 56. Ramírez G.C., Herrera J.C., Muñeton C.M.,<!-- [et_pb_line_break_holder] --> Márquez J.R., Isaza L.F. (2008) Análisis de las<!-- [et_pb_line_break_holder] --> aneuploidías del cromosoma 17 y deleción del<!-- [et_pb_line_break_holder] --> gen TP53 en tumores gastrointestinales por<!-- [et_pb_line_break_holder] --> FISH-bicolor. Rev. Col. Gastroenterol. 23 (4):<!-- [et_pb_line_break_holder] --> 333-342.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 57. Rangel L., Piña P., Salcedo M. (2006) Variaciones<!-- [et_pb_line_break_holder] --> genéticas del gen supresor de tumores TP53:<!-- [et_pb_line_break_holder] --> relevancia y estrategias de análisis. Rev.<!-- [et_pb_line_break_holder] --> Invest. Clin. 58 (3): 254-264.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 58. Ribeiro R.C., Sandrini F., Figueiredo B., Zambetti<!-- [et_pb_line_break_holder] --> G.P., Michalkiewicz E., Lafferty A.R. (2001) An<!-- [et_pb_line_break_holder] --> inherited p53 mutation that contributes in a<!-- [et_pb_line_break_holder] --> tissue-specific manner to pediatric adrenal<!-- [et_pb_line_break_holder] --> cortical carcinoma. Proc. Natl. Acad. Sci. USA<!-- [et_pb_line_break_holder] --> 98: 9330-9335.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">59. Richards S., Aziz N., Bale S., Bick D., Das S.,<!-- [et_pb_line_break_holder] --> Gastier J. (2015) Standards and guidelines<!-- [et_pb_line_break_holder] --> for the interpretation of sequence variants:<!-- [et_pb_line_break_holder] --> a joint consensus recommendation of the<!-- [et_pb_line_break_holder] --> American College of Medical Genetics and<!-- [et_pb_line_break_holder] --> Genomics and the Association for Molecular<!-- [et_pb_line_break_holder] -->Pathology. Genet. Med. 17 (5): 405-423.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 60. Richardson R.B. (2013) p53 mutations associated<!-- [et_pb_line_break_holder] --> with aging-related rise in cancer incidence<!-- [et_pb_line_break_holder] --> rates. Cell cycle 12 (15): 2468-2478.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 61. Risueño P.A. (2012) Bioinformática aplicada a<!-- [et_pb_line_break_holder] --> estudios del transcriptoma humano: análisis<!-- [et_pb_line_break_holder] --> de expresión de genes, isoformas génicas y<!-- [et_pb_line_break_holder] --> ncRNAs en muestras sanas y en cáncer. Tesis<!-- [et_pb_line_break_holder] --> Doctoral, Universidad de Salamanca, España.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 62. Roa J.C., Roa I., Araya J.C., Villaseca M., Melo A.,<!-- [et_pb_line_break_holder] --> Burgos L. (2002) Gen supresor de tumores<!-- [et_pb_line_break_holder] --> p53 en neoplasias digestivas. Rev. Med. Chile<!-- [et_pb_line_break_holder] --> 128 (11): 1269-1278.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 63. Roa S., Roa I., Araya J.C., Villaseca M.A., Melo A.,<!-- [et_pb_line_break_holder] --> Burgos L. (2000) Gen supresor de tumores<!-- [et_pb_line_break_holder] --> p53 en neoplasias digestivas. Rev. Med. Chile <!-- [et_pb_line_break_holder] --> 128 (11): 1269-1278.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 64. Rodrigues N.R., Rowan A., Smith M.E., Kerr I.B.,<!-- [et_pb_line_break_holder] --> Bodmer W.F., Gannon J.V., Lane D.P. (1990)<!-- [et_pb_line_break_holder] --> p53 mutations in colorectal cancer. Proc. Natl.<!-- [et_pb_line_break_holder] --> Acad. Sci. USA. 87: 7555-7559.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 65. Rojas M., Salmen S., Berrueta L. (2009)<!-- [et_pb_line_break_holder] --> Muerte celular programada: I. Activación y<!-- [et_pb_line_break_holder] --> mecanismos de regulación. Rev. Med. Ext.<!-- [et_pb_line_break_holder] --> Portuguesa 25, 4 (3): 92-106.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 66. Saavedra K., Valbuena J., Olivare W., Marchant<!-- [et_pb_line_break_holder] --> M.J., Rodriguez A., Torres V. (2015) Loss<!-- [et_pb_line_break_holder] --> of expression of Reprimo, a p53–induced<!-- [et_pb_line_break_holder] --> Cell Cycle arrest gene, correlates with<!-- [et_pb_line_break_holder] --> invasive stage of tumor. Progression and p73<!-- [et_pb_line_break_holder] --> expression in Gastric Cancer. Plos One 10 (5):<!-- [et_pb_line_break_holder] --> 1-13.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 67. Sánchez M.A. (2006) Cáncer hereditario. 1ra<!-- [et_pb_line_break_holder] --> ed. Sociedad Española de Oncología Médica<!-- [et_pb_line_break_holder] --> SEOM, Madrid, España.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 68. Shuyer M., Sonja C., Henzen L., Van Der Burg<!-- [et_pb_line_break_holder] --> M., Fieret E., Klun J., Foekens J.A., Berns E.<!-- [et_pb_line_break_holder] --> (1998) High prevalence of codon 213Arg-<!-- [et_pb_line_break_holder] --> Stop mutations of the TP53 gene in humans<!-- [et_pb_line_break_holder] --> ovarian cancer in the southwestern part of the<!-- [et_pb_line_break_holder] --> Netherlands. Int. J. Cancer. 76: 299-303.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 69. Sjoeblom T., Jones S., Wood L.D., Parsons D.W.,<!-- [et_pb_line_break_holder] --> Lin J. (2006) The consensus coding sequences<!-- [et_pb_line_break_holder] --> of human breast and colorectal cancers.<!-- [et_pb_line_break_holder] --> Science 314: 268-274.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 70. Somers K.D., Merrick M.A., Lopez M.E.,<!-- [et_pb_line_break_holder] --> Incognito L.S., Schechter G.L., Casey G. (1992)<!-- [et_pb_line_break_holder] --> Frequent p53 mutations in head and neck<!-- [et_pb_line_break_holder] --> cancer. Cancer Res. 52: 5997-6000.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 71. Sprague B.L., Trentham A., García M., Newcomb<!-- [et_pb_line_break_holder] --> P.A., Titus L., Hampton J.M. (2007) Genetic<!-- [et_pb_line_break_holder] --> variation in TP53 and risk of breast cancer<!-- [et_pb_line_break_holder] --> in a population -based case- control study.<!-- [et_pb_line_break_holder] --> Carcinogenesis 28 (8): 1680-1686.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 72. Srivastava S., Zou Z., Pirollo K., Blattner W.,<!-- [et_pb_line_break_holder] --> Chang E.H. (1990) Germ-line transmission of<!-- [et_pb_line_break_holder] --> a mutated p53 gene in a cancer-prone family<!-- [et_pb_line_break_holder] --> with Li-Fraumeni syndrome. Nature 348:<!-- [et_pb_line_break_holder] --> 747-749.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 73. Surget S., Khoury M.P., Bourdon J.C. (2013)<!-- [et_pb_line_break_holder] --> Uncovering the role of p53 splice variants in<!-- [et_pb_line_break_holder] --> human malign ancy: a clinical perspective.<!-- [et_pb_line_break_holder] --> Onco. Targets Ther. 7: 57-68.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 74. Tomoaki A., Takumi K., Hirotaka O., Ducommun<!-- [et_pb_line_break_holder] --> B., Makoto I., Takashi O. (2001) Involvement<!-- [et_pb_line_break_holder] --> of the interaction between p21 and PCNA for<!-- [et_pb_line_break_holder] --> the maintenance of G2/M after DNA damage.<!-- [et_pb_line_break_holder] --> J. Biochem. Chem. 276 (46): 42971-42977.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 75. Tu C., Tan Y.H., Shaw G., Zhou Z., Bai Y., Luo<!-- [et_pb_line_break_holder] --> R., Ji X. (2008) Impact of low-frequency<!-- [et_pb_line_break_holder] --> hotspot mutation R282Q on the structure<!-- [et_pb_line_break_holder] --> of p53 DNA-binding domain as revealed by<!-- [et_pb_line_break_holder] --> crystallography at 1.54 angstroms resolution.<!-- [et_pb_line_break_holder] --> Acta Crystallogr. 64: 471-477.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 76. Ubby I., Krueger C., Rosato R., Qian W., Chang<!-- [et_pb_line_break_holder] --> J., Sabapathy K. (2019) Cancer therapeutic<!-- [et_pb_line_break_holder] --> targeting using mutant–p53-specific siRNAs.<!-- [et_pb_line_break_holder] --> Oncogene 38: 3415-3427.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 77. Uniprot Database. URL: <a href="http://www.uniprot.org/" target="_blank">http://www.uniprot.org/</a> [20-06-2016].</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 78. Uramoto H., Sugio K., Oyama T., Hanagiri T.,<!-- [et_pb_line_break_holder] --> Yasumoto K. (2006) P53R2, p53 inducible<!-- [et_pb_line_break_holder] --> ribonucleotide reductase gene, correlated<!-- [et_pb_line_break_holder] --> with tumor progression of non-small cell<!-- [et_pb_line_break_holder] --> lung cancer. Anticancer Res. 26 (2A): 983-<!-- [et_pb_line_break_holder] --> 988.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 79. Valva P., Becker P., Streitemberger P., García<!-- [et_pb_line_break_holder] --> M., Rey G., Guzmán C. (2009) Germline<!-- [et_pb_line_break_holder] --> TP53 mutations and single nucleotide<!-- [et_pb_line_break_holder] --> polymorphisms in children. Medicina<!-- [et_pb_line_break_holder] --> (Buenos Aires) [online] 69 (1): 143-147.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 80. Van Rensburg E.J., Engelbrecht S., van Heerden<!-- [et_pb_line_break_holder] --> W.F., Kotze M.J., Raubenheimer E.J. (1998)<!-- [et_pb_line_break_holder] --> Detection of p53 gene mutations in oral<!-- [et_pb_line_break_holder] --> squamous cell carcinomas of a black African<!-- [et_pb_line_break_holder] --> population sample. Hum. Mutat. 11: 39-44.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 81. Varley J.M., McGrown G., Thorncroft M., Tricker<!-- [et_pb_line_break_holder] --> K.J., Teare M.D. (1995) An extended Li-<!-- [et_pb_line_break_holder] --> Fraumeni kindred with gastric carcinoma and<!-- [et_pb_line_break_holder] --> a codon 175 mutation in TP53. J. Med. Genet.<!-- [et_pb_line_break_holder] --> 32: 942-945.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 82. Ward A., Cooper T. (2010) The Pathobiology of<!-- [et_pb_line_break_holder] --> splicing. J. Pathol. 220 (2): 152-163.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 83. Yakovlev A., Di Giovanni S., Wang G., Liu W.,<!-- [et_pb_line_break_holder] --> Stoica B., Faden A. (2004) BOK and NOXA<!-- [et_pb_line_break_holder] --> Are Essential Mediators of p53-dependent<!-- [et_pb_line_break_holder] --> Apoptosis. J. Biol. Chem. 279 (27): 28367-<!-- [et_pb_line_break_holder] --> 28374.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 84. Yang X., Lu L. (2015) Expression of HPV-16 E6<!-- [et_pb_line_break_holder] --> Protein and p53 Inactivation Increases the<!-- [et_pb_line_break_holder] --> Uterine Cervical Cancer Invasion. Drug Res.<!-- [et_pb_line_break_holder] --> 65 (2): 70-73.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 85. Zhang Y., Karas M., Zhao H., Yakar S., Le Roith<!-- [et_pb_line_break_holder] --> D (2004) 14-3-3Sigma mediation of cell cycle<!-- [et_pb_line_break_holder] --> progression is p53-independent in response<!-- [et_pb_line_break_holder] --> to insulin-like growth fator-l receptor<!-- [et_pb_line_break_holder] --> activation. J. Biol. Chem. 279 (33): 34353-<!-- [et_pb_line_break_holder] --> 34360.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 86. Zhao K., Chai X., Johnston K., Clements A.,<!-- [et_pb_line_break_holder] --> Marmorstein R. (2001) Crystal structure of<!-- [et_pb_line_break_holder] --> the mouse p53 core DNAbinding domain at 2.7<!-- [et_pb_line_break_holder] --> Å resolution. J. Biol. Chem. 276: 12120-12127.</font></p><!-- [et_pb_line_break_holder] --></body><!-- [et_pb_line_break_holder] --></html>
Verified by MonsterInsights