

Recursos Genéticos e Biotecnologia

Germplasm collecting: filling the gaps on crop wild relatives in *ex situ* collections in Brazil

Marcelo Brilhante de Medeiros

Adapting Agriculture to Climate Change:
A Global Initiative to Collect, Conserve, and Use
Crop Wild Relative –<u>https://www.cwrdiversity.org/</u>

Recursos Genéticos e Biotecnologia

Partners:

Wild crop relatives (WCR) - Background
WCR: disease resistance, pests and abiotic stresses tolerances;

* Increasing cultivars containing WCR genes;

 Major gaps in genetic diversity have not been filled in germplasm banks;

 Destruction of natural habitats, invasive species, changes from traditional to industrial agriculture and climate change;

Wild Crop Relatives

- * ~ 1000,000 WCR species have high priority for food security
- Prioritization in a resource-constrained and timelimited environment: Which species to collect? Where to collect?
- Gap analysis: database intensive, new computational tools and GIS to generate these responses

Análise de lacunas

OPEN O ACCESS Freely available online

A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with *Phaseolus* Beans

Julián Ramírez-Villegas¹*, Colin Khoury², Andy Jarvis^{1,3,4}, Daniel Gabriel Debouck⁵, Luigi Guarino²

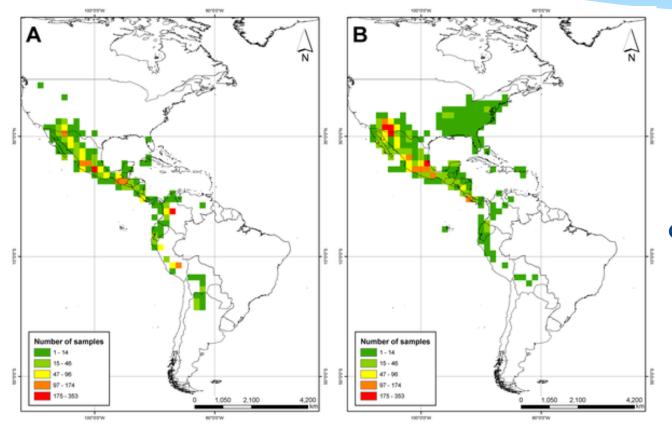
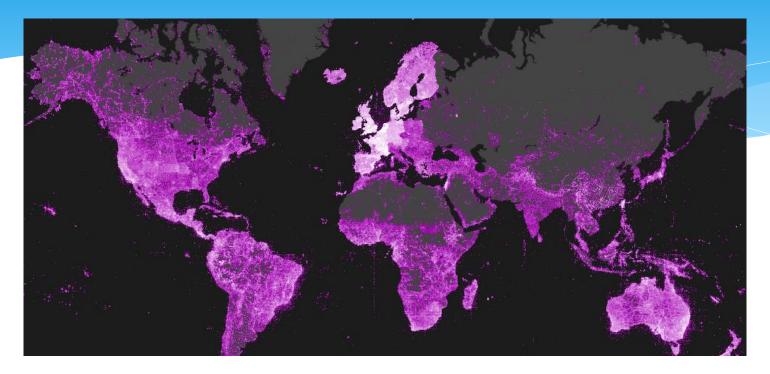


Figure 1. Sampling density (richness records) for (A) herbarium and Germplasm genebanks (B).

Gap analysis

Sampling representativity = germplasm accessions in relation to herbarium records


- Geographic representativeness = geographic distribution of taxax and spatial distribution of genebanks samples
- Environmental representativeness = environmental coverage of genebank samples and potential environmental areas

Gap analysis

 species rarity = number of populations in rare environments and total number of populations

 Final score = sampling, geographical, environmental and rarity representativity scores

Gap analysis – data

Gap analysis

Terrestrial Ecoregions of the World: A New Map of Life on Earth

DAVID M. OLSON, ERIC DINERSTEIN, ERIC D. WIKRAMANAYAKE, NEIL D. BURGESS, GEORGE V. N. POWELL, EMMA C. UNDERWOOD, JENNIFER A. D'AMICO, ILLANGA ITOUA, HOLLY E. STRAND, JOHN C. MORRISON, COLBY J. LOUCKS, THOMAS F. ALLNUTT, TAYLOR H. RICKETTS, YUMIKO KURA, JOHN F. LAMOREUX, WESLEY W. WETTENGEL, PRASHANT HEDAO, AND KENNETH R. KASSEM

WorldClim - Global Climate Data

Free climate data for ecological modeling and GIS

Download Contact form About us

WorldClim

WorldClim is a set of global climate layers (climate grids) with a spatial resolution of about 1 square kilometer. The data can be used for mapping and spatial modeling in a GIS or with other computer programs. If you are not familiar with such programs, you can try DIVA-GIS or the *R* raster package.

The current version is Version 1.4 (release 3). Please write us if you find any problems.

WorldClim 1.4: Current conditions (~1960-1990)

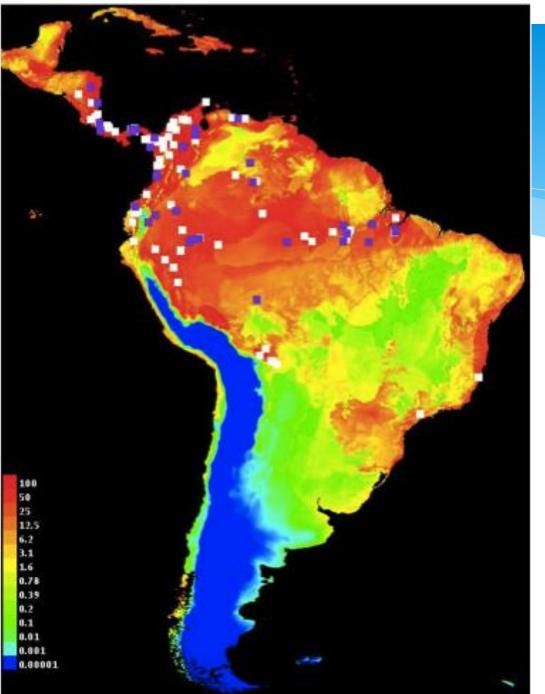
If you need the highest resolution (**30 arc-seconds (~1 km)**) then you can **download by tile**. See the Methods page for more info on how these data were generated, and this page for info on details about the data (such as units).

Generic grid format

variable	10 minutes	5 minutes	2.5 minutes	30 seconds
minimum temperature (°C * 10)	tmin 10m	tmin 5m	tmin 2.5m	tmin 30s
maximum temperature (°C * 10)	tmax 10m	tmax 5m	tmax 2.5m	tmax 30s
average temperature (°C * 10)	tavg 10m	tavg 5m	tavg 2.5m	tavg 30s
precipitation (mm)	prec 10m	prec 5m	prec 2.5m	prec 30s
bioclimatic variables	bio 10m	bio 5m	bio 2.5m	bio1-9, 10-19

ESRI grids

variable	10 minutes	5 minutes	2.5 minutes	30 seconds
minimum temperature (°C * 10)	tmin 10m	tmin 5m	tmin 2.5m	tmin 30s
maximum temperature (°C * 10)	tmax 10m	tmax 5m	tmax 2.5m	tmax 30s
average temperature (°C * 10)	tavg 10m	tavg 5m	tavg 2.5m	tavg 30s
precipitation (mm)	prec 10m	prec 5m	prec 2.5m	prec 30s
bioclimatic variables	bio 10m	bio 5m	bio 2.5m	bio 30s



Bioclimatic variables

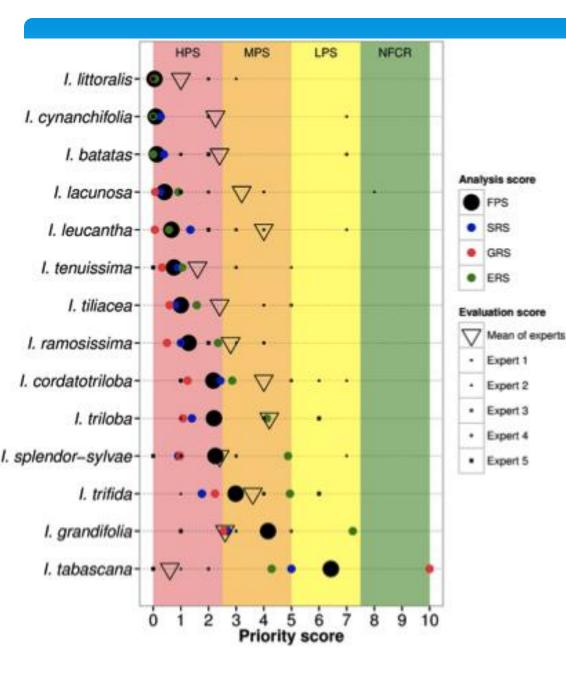
Bioclimatic variables are derived from the monthly temperature and rainfall values in order to generate more biologically meaningful variables. These are often used in species distribution modeling and related ecological modeling techniques. The bioclimatic variables represent annual trends (e.g., mean annual temperature, annual precipitation) seasonality (e.g., annual range in temperature and precipitation) and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest month, and precipitation of the wet and dry quarters). A quarter is a period of three months (1/4 of the year).

They are coded as follows:

- BIO1 = Annual Mean Temperature
- BIO2 = Mean Diurnal Range (Mean of monthly (max temp min temp))
- BIO3 = Isothermality (BIO2/BIO7) (* 100)
- BIO4 = Temperature Seasonality (standard deviation *100)
- BIO5 = Max Temperature of Warmest Month
- BIO6 = Min Temperature of Coldest Month
- BIO7 = Temperature Annual Range (BIO5-BIO6)
- BIO8 = Mean Temperature of Wettest Quarter
- BIO9 = Mean Temperature of Driest Quarter
- BIO10 = Mean Temperature of Warmest Quarter
- BIO11 = Mean Temperature of Coldest Quarter
- BIO12 = Annual Precipitation
- BIO13 = Precipitation of Wettest Month
- BIO14 = Precipitation of Driest Month
- BIO15 = Precipitation Seasonality (Coefficient of Variation)
- BIO16 = Precipitation of Wettest Quarter
- BIO17 = Precipitation of Driest Quarter
- BIO18 = Precipitation of Warmest Quarter
- BIO19 = Precipitation of Coldest Quarter

Gap analysis processing

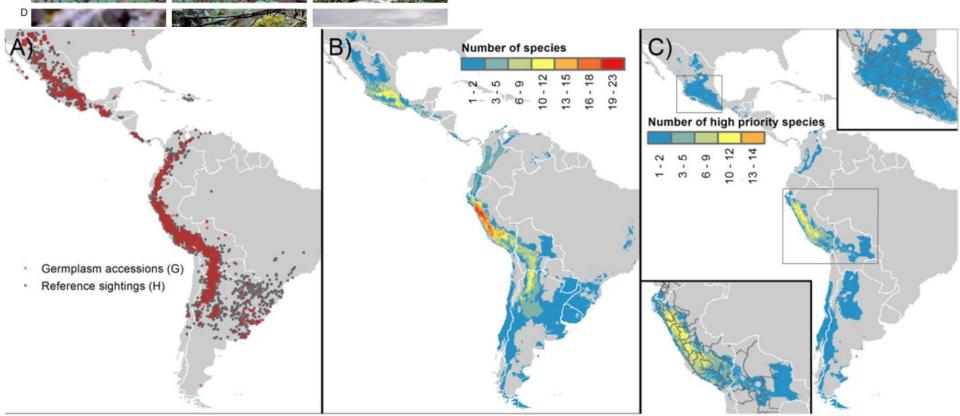
Maxent: niche modelling


WCR - priorities

Ex situ conservation priotities for *Ipomoea* – Khoury et al. 2015. Frontiers in Plant Science

Taxon	Gene pool	Ploidy	Germplasm accessions	Gap analysis priority	Mean expert priority	Eco geographic cluster	Potential adaptation to
Ipomoea batatas	2	4x = 60	4 (0)	HPS	HPS	2	Heat, high precipitation, drought, precipitation seasonality, clay soils
I. cordatotriloba	3	2x, 4x	103 (67)	HPS	MPS	1	Cold, temperature variation, clay soils, sandy soils
I. cynanchifolia	3	2x = 30	1 (0)	HPS	HPS	1,2	Drought, precipitation seasonality, sandy soils
I. grandifolia	3	2x = 30	124 (83)	MPS	MPS	1	Cold, temperature variation, clay soils, sandy soils
I. lacunosa	3	2x = 30	10 (1)	HPS	MPS	1	Cold, temperature variation, drought
I. leucantha	3	2x = 30	18 (15)	HPS	MPS	1,2	Heat, drought, precipitation seasonality, sandy soils
I. littoralis	2	2x = 30	2 (2)	HPS	HPS	2	Heat, high precipitation, drought, precipitation seasonality, sandy soils
I. ramosissima	3	2x = 30	34 (30)	HPS	MPS	2,1	Cold, high precipitation, clay soils
I. splendor-sylvae	3	2x = 30	16 (9)	HPS	HPS	2	Heat, high precipitation, drought, precipitation seasonality, clay soils
I. tabascana	2	4x = 60	4 (2)	LPS	HPS	2	Heat, high precipitation, clay soils
I. tenuissima	3	2x = 30	3 (1)	HPS	HPS	1	Heat, cold, temperature variation, sandy soils
I. tiliacea	3	4x = 60	61 (44)	HPS	HPS	2	Heat, high precipitation, clay soils
I. trifida	2	2x,3x,4x,6x	248 (159)	MPS	MPS	2	Heat, high precipitation, drought, precipitation seasonality
I. triloba	3	2x = 30	121 (74)	HPS	MPS	2,1	Heat, drought

Ploidy data adapted from Nimmakayala et al. (2011). Germplasm accessions displays both the total number of accessions recorded in genebanks, as well as the number of accessions with unique geographic coordinates (i.e., unique populations) in parenthesis. HPS = high, MPS = medium, and LPS = low priority species for further collecting.



Ex situ conservation priotities for *Ipomoea*– Khoury et al. 2015, Frontiers in Plant Science

Ex situ conservation priotities for potato (*Solanum* L. Section Petota) Castaneda-Alvarez *et al.* 2015. PlosOne

Disease resistance: S. acaule, S. bulbocastanum, S. chacoense, S. demissum and S. stoloniferum.

Recursos Genéticos e Biotecnología

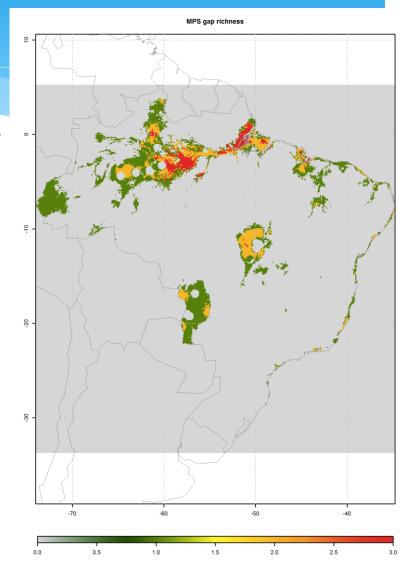
* "Filling the gaps of wild relatives in ex situ collections: Eleusine, Ipomoea, Oryza and Solanum germplasm collection."

- * Objective: Identify collection gaps in the ex situ collections of Oryza, Solanum, Ipomoea and Eleusine;
- * Germplasm collecting

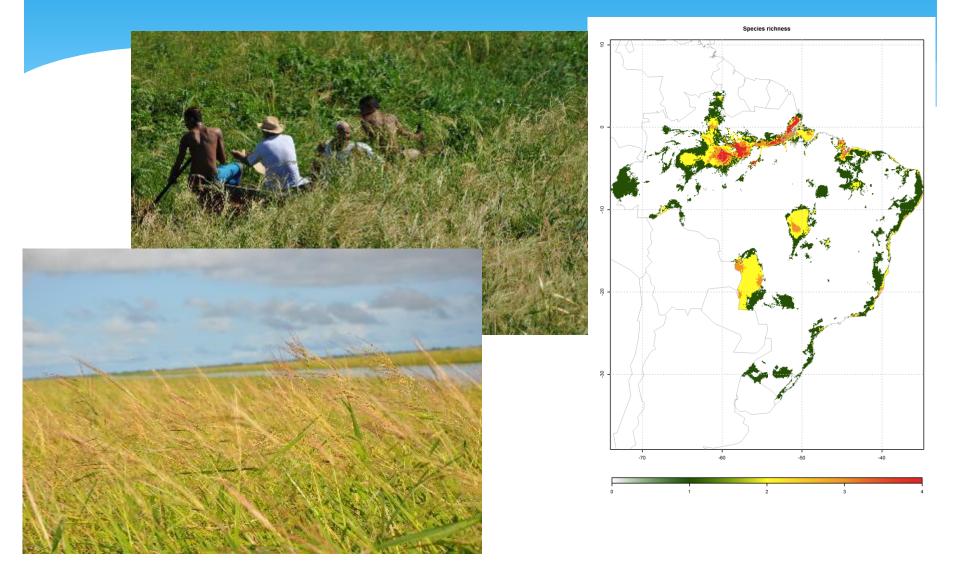
Recursos Genéticos e Biotecnología

- * Finger millet: Eleusine indica; E. tristachya.
- <u>Sweet potato</u>: Ipomoea grandifolia, I. ramosissima, I. tiliacea, I. cynanchifolia, I. triloba;
- * <u>Rice</u> : Oryza glumaepatula, Oryza alta, O. grandiglumis and O. latifolia
- Potato: Solanum chacoense subsp. muelleri; S. commersonii subsp. commersonii and subsp. malmeanum.

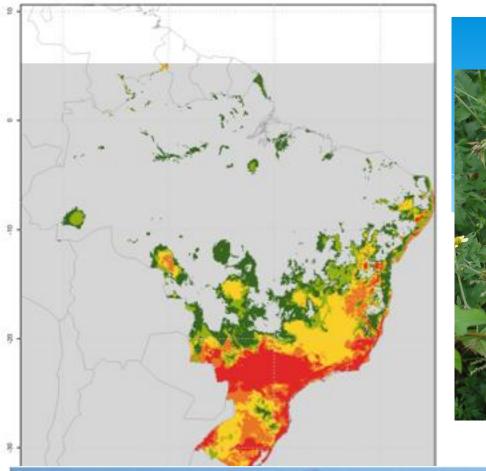
Project Workplan



- * Deposit and multiplication of accessions
- * Evaluation of seed physiological quality
- * Cryopreservation tests

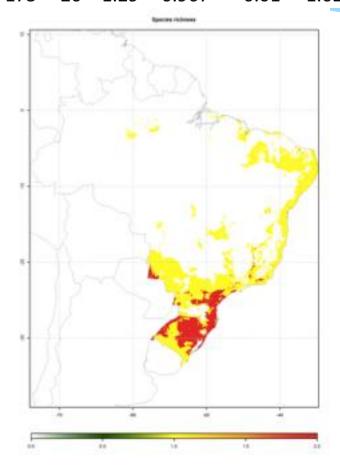

- Inventory and collection of sweet potato in indigenous areas
- * Deposit of plant specimens in Herbaria
- * Documentation

Gap analysis– Oryza spp.


TOT HS GS SRS ATAI STAUC GRS ERS TAXON FPCAT FPS Oryza_alta 7 24 7.08 0.9 0.07 0.62 2.17 3.29 MPS 17 Oryza_glumaepatula 98 24 74 7.55 0.9 0.02 2.25 3.43 4.41 MPS Oryza_grandiglumis 5.32 0.9 0.04 0.97 2.81 3.03 MPS 47 22 25 Oryza_latifolia 2.31 0.9 0.1 0.75 1.89 78 60 18 1.65 HPS

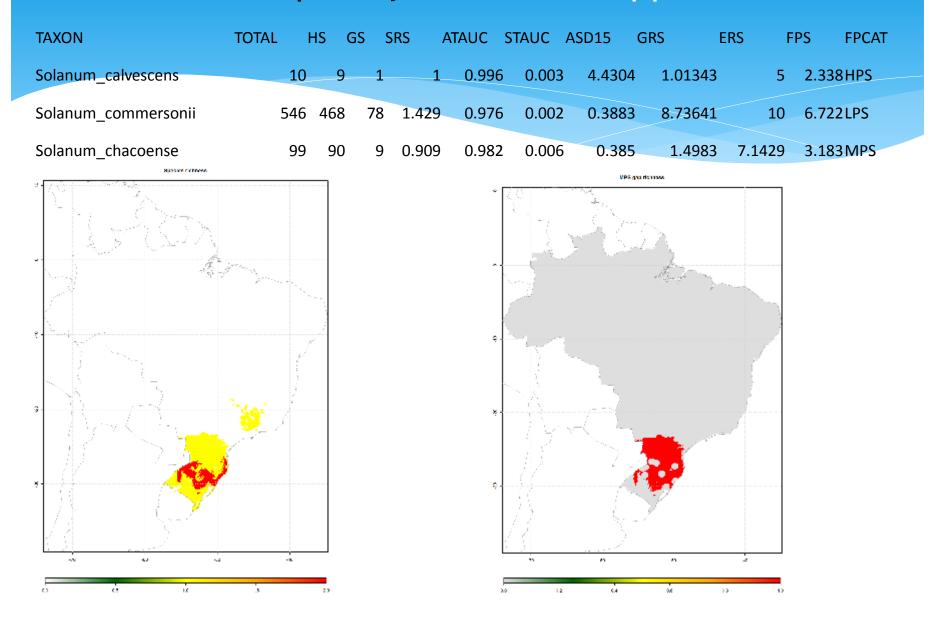
Collecting Oryza spp.

TAXON	TOTAL I	ΗS	GS		SRS	ATAU(STAUC	GRS	ERS	FPS	FPCA ⁻
Ipomoea_cynanchifolia	48	48		0	0	0.76	0.14	0	0	0	HPS
Ipomoea_grandifolia	230	230		0	0	0.9	0.01	0	0	0	HPS
lpomoea_ramosissima	187	187		0	0	0.8	0.05	0	0	0	HPS
Ipomoea_tiliacea	190	190		0	0	0.89	0.07	0	0	0	HPS
Ipomoea_triloba	154	154		0	0	0.83	0.03	0	0	0	HPS



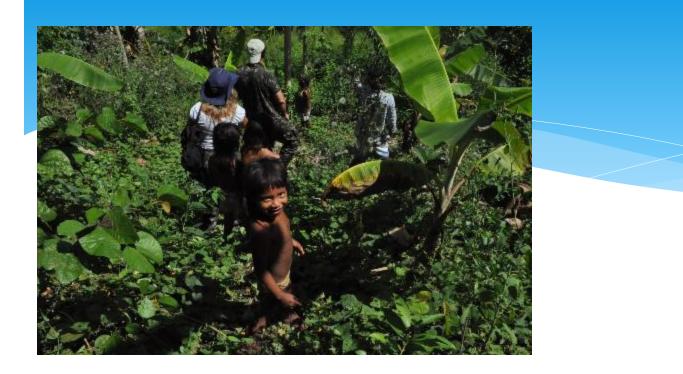
Gap analysis– Eleusine spp.

TAXON Eleusine_indica Eleusine_tristachya

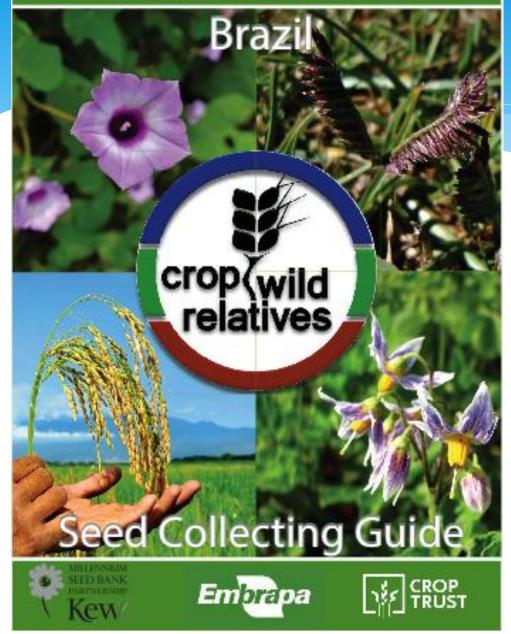

SRS ERS FPCAT TOTAL HS GS ATAUC STAUC ASD15 GRS FPS 836 835 1 0.01 0.825 0.017 1.8857 0.06 0.63 0.231 HPS 2.909 MPS 201 175 26 1.29 0.967 0.01 1.6298 2.43 5

Collecting - Eleusine spp.

Gap analysis– Solanum spp.


Collecting – Solanum spp.

Collecting and multiplication – Germplasm genebank



S. commersonii

Inventory, collection and conservation of sweet potato varieties in the Krahô Indigenous Land

Adapting agriculture to climate change: collecting, protecting and preparing crop wild relatives

Thanks! marcelo.brilhante@embrapa.br