

Genome editing in crops: new tools in an old toolbox

Agustin ZSÖGÖN

Departamento de Biologia Vegetal Universidade Federal de Viçosa, MG Brazil

Introduction

- Food security: Breeding challenges for the next decades **New tools:**

1- Ideotype breeding of crop varieties

- The ideotype and model-based breeding
- Case study: Enhancing autogamy and fruit yield

2- De novo domestication of wild species

- A novel approach to explore natural genetic variation
- Case study: domestication of a tomato wild relative

Perspectives

Introduction

Food security: Breeding challenges for the next decades
New tools:

1- Ideotype breeding of crop varieties

- The ideotype and model-based breeding
- Case study: Enhancing autogamy and fruit yield

2- De novo domestication of wild species

- A novel approach to explore natural genetic variation
- Case study: domestication of a tomato wild relative

Perspectives

Introduction

Food security: all people, at all times, have physical, social, and economic access to sufficient, safe, and nutritious **food** that meets their **food** preferences and dietary needs for an active and healthy life.

(UN Committee on World Food Security, 2017)

1-Population growth

200,000 new people every day (need to be fed)

2- Change in climate

Losses in the US are caused mainly by abiotic stresses

3-Nutritional losses: past

Original Research

Changes in USDA Food Composition Data for 43 Garden Crops, 1950 to 1999 Davis et al. (2004) J. Am. Coll. Nutr. 23: 669-682

Donald R. Davis, PhD, FACN, Melvin D. Epp, PhD and Hugh D. Riordan, MD

- Nutritional content in horticultural crops has been decreasing
- Biofortification (cereals, legumes)
 www.harvestplus.org

3- Nutritional losses: future (the "Loladze Effect")

Loladze (2014) eLife doi:10.7554/eLife.02245

Challenges and goals for food security in the coming decades Challenge Goal 1- Population growth Increased yield Resilience 2- Climate change

3- Nutritional losses

Nutritional quality

Challenges and goals for food security in the coming decades

How can we deploy the revolutionary geneediting technology to improve crops on a faster timescale?

Introduction

Food security: Breeding challenges for the next decades
 New tools:

- **1- Ideotype breeding of crop varieties**
- The ideotype and model-based breeding
- Case study: Enhancing autogamy and fruit yield

2- De novo domestication of wild species

- A novel approach to explore natural genetic variation
- Case study: domestication of a tomato wild relative

Perspectives

Ideotype breeding

Euphytica 17 (1968): 385-403

THE BREEDING OF CROP IDEOTYPES

C. M. DONALD

Waite Agricultural Research Institute, The University of Adelaide, South Australia

Breeding:

- (1) Defect elimination
- (2) Increased yield

(3) A philosophy for breeding based on the use of models

He proposed building theoretical models based on

Knowledge

Experience

Imagination

Photo: CSIRO, Australia

Colin Donald (1910-1985)

Ideotype breeding

A philosophy for breeding based on the use of models

The **ideotype**: a plant that in a given environment is

- (i) Theoretically capable of greater production
- (ii) <u>Designed</u> to be bred from the material available (*reverse breeding*)

Introduction

Food security: Breeding challenges for the next decades
 New tools:

- **1- Ideotype breeding of crop varieties**
- The ideotype and model-based breeding
- Case study: Enhancing autogamy and fruit yield

2- De novo domestication of wild species

- A novel approach to explore natural genetic variation
- Case study: domestication of a tomato wild relative

Perspectives

Capsicum (pepper) species are frequently allogamous

Naves et al (2019) TIPS 24:109-120

C. frutescens

C. pubescens

C. annuum

- Low fruit set and reduced yield
- Difficulties to produce pure seed (outcrossing)

C. frutescens

C. pubescens

C. annuum

- Low fruit set and reduced
- Difficulties to produce

In tomato, full autogamy is a key domestication trait

Style2.1 gene

(1) Style length is reduced in cultivated tomato

(2) The responsible gene has
been identified – a change in
the promoter region alters
expression levels

Chen et al. (2007) Science 318: 643-645

Two CRISPR/Cas9 constructs targeting CaSTYLE2.1

- Promoter and coding region of the gene
- Ensure maximal phenotypic variation to discover trait of interest

		100 1	50 200	250	300	350	400	450	500	550	600	65	0 70	0
									gRN	A- >				
- 8	800 85	0 900	950	1,000	1,050	1,100	1,150	1,200	1,250	1,300	1,350	1,400	1,450	1,
			gR											
1,550	0 1,600	1,650	1,700	1,750	1,800 1	,850 1	,900 1.	950 2,	000 2	050 2	2,100	2,150	2,200	2,250
2,300	2,350	2,400	2,450 2,	500 2,55	0 2,60	0 2,651) 2,700	2,750	2,800	2,85	0 2,9	900 2	,950 3	3,000
	3,100 3	1,150 3,2	00 3,250	3,300	3,350	3,400	3,450	3,500	3,550	3,600	3,650	3,700) 3,75	0 :
	3,100 3	8,150 3,2	00 3,250	3,300	3,350	3,400	3,450	3,500	3,550	3,600	3,650	3,700	3.75	0 3
	3,100 3	8,150 3,2	00 3,250	3,300	3,350	3,400	3,450	3,500	3,550	3,600	3,650	3,700) 3,75	0 3
3,8	3,100 3 50 3,90	0 3,950	4,000	3,300	3,350	3,400	3,450	3,500	3,550	3,600	3,650	3,700	4,500	4,55
3,8	3,100 3 50 3,00	8,150 3,2 0 3,950	00 3,250 4,000	3,300 4,050	3,350 4,100	3,400 4,150	3,460	3,500 4,250	3,550 4,300	3,600 4,350	3,650 4,400	3,700 4,450) 3,75 4,500	0 :
3,8	3,100 3	8,150 3,2 0 3,950	00 3,250 4,000	3,300 4,050	3,350 4,100	3,400 4.150	3,460 4,200	3,500 4,250	3,550 4,300	3,600 4,350	3,650 4,400	3,700 4,450) 3,75 4,500	0 : 4,55
3.8	3,100 3 50 3,90 4,650	0 3,950 4,700	4,000	3,300 4.050	3,350 4,100	3,400 4,150	3,450 4,200	3,500 4,250	3,550 4,300	3,800	3,850 4,400	3,700 4,450 5,200	0 3,75 4,500	0 : 4,55
3,8	3,100 3 50 3,90 4,850	0 3,950 4,700	00 3,250 4,000 4,750	3,300 4,050 4,800 4,	3,350 4,100 850 4,1	3,400 4,150	3,450 4,200	3,500 4,250 00 5,02	3,550 4,300 50 5,1	3,800 4,350 00 5,	3,650 4,400	3,700 4,450 5,200) 3.75 4.500 5.250	0 : 4,55
3,8	3,100 3 50 3,90 4,850	8,150 3,21 0 3,950 4,700	00 3,250 4,000 4,750	3,300 4,050 4,800 4,	3,350 4,100 850 4,1	3,400 4,150 900 4,6	3,450 4,200 50 5,0	3,500 4,250 00 5,02	3,550 4.300 50 5,1	3,800 4,350 00 5,	3,650 4,400 150 ¢ CA02	3,700 4,450 5,200 2 g 28360) 3,76 4,500 5,250	0 3 4,55 5,300

Two CRISPR/Cas9 constructs targeting CaSTYLE2.1

- Promoter and coding region of the gene
- Ensure maximal phenotypic variation to discover trait of interest

In tomato, full autogamy is a key domestication trait

(1) Fused anthers forming a cone

dialytic gene

Introduction

- Food security: Breeding challenges for the next decades **New tools:**

- 1- Ideotype breeding of crop varieties
- The ideotype and model-based breeding
- Case study: Enhancing autogamy and fruit yield
- 2- De novo domestication of wild species
- A novel approach to explore natural genetic variation
- Case study: domestication of a tomato wild relative

Perspectives

Domestication and breeding entailed loss of genetic diversity

Domestication and breeding entailed loss of genetic diversity

Focus on yield

Loss of <u>resilience</u> and <u>nutritional</u> traits

Gao et al (2019) Nature Genetics

A novel approach to harness natural genetic variation

Review article

Plant Science 256 (2017) 120-130

Genome editing as a tool to achieve the crop ideotype and *de novo* domestication of wild relatives: Case study in tomato

Agustin Zsögön^{a,1}, Tomas Cermak^{b,1}, Dan Voytas^b, Lázaro Eustáquio Pereira Peres^{c,*}

Introduction

- Food security: Breeding challenges for the next decades **New tools:**

- 1- Ideotype breeding of crop varieties
- The ideotype and model-based breeding
- Case study: Enhancing autogamy and fruit yield

2- De novo domestication of wild species

- A novel approach to explore natural genetic variation
- Case study: domestication of a tomato wild relative

Perspectives

Multiplex targeting of domestication genes in *S. pimpinellifolium* in one generation

- Growth habit (determinate)
- Flower number (+600%)
- Fruit size (+300%)
- Fruit shape (ovate)
- Lycopene content (+500%)

Wild tomato

Genome engineering

(In one generation)

New domesticate

Article | Published: 01 October 2018

De novo domestication of wild tomato using genome editing

Agustin Zsögön, Tomáš Čermák, Emmanuel Rezende Naves, Marcela Morato Notini, Kai H Edel, Stefan Weinl, Luciano Freschi, Daniel F Voytas, Jörg Kudla [™] & Lázaro Eustáquio Pereira Peres [™]

Nature Biotechnology 36, 1211-1216 (2018)

This Altmetric score means that the article is:

- in the 99th percentile (ranked 337th) of the 263,314 tracked articles of a similar age in all journals
- in the 95th percentile (ranked 2nd) of the 47 tracked articles of a similar age in *Nature Biotechnology*

EDITORIAL · 02 OCTOBER 2018

Super-tomato shows what plant scientists can do

A better-tasting tomato highlights problems with Europe's outdated approach to gene editing.

Introduction

- Food security: Breeding challenges for the next decades **New tools:**

1- Ideotype breeding of crop varieties

- The ideotype and model-based breeding
- Case study: Enhancing autogamy and fruit yield

2- De novo domestication of wild species

- A novel approach to explore natural genetic variation
- Case study: domestication of a tomato wild relative

Perspectives

Convergent crop domestication facilitates gene discovery

Lenser & Theissen (2013) TIPS 18: 704-714

Convergent crop domestication facilitates gene discovery

- Use of closely related model species
- Genes in 'simple' pathways or with reduced pleiotropic effects
- Bioinformatics to find homologous genes or equivalent nodal positions

Convergent crop domestication facilitates gene discovery

Introduction

- Food security: Breeding challenges for the next decades **New tools:**

1- Ideotype breeding of crop varieties

- The ideotype and model-based breeding
- Case study: Enhancing autogamy and fruit yield

2- De novo domestication of wild species

- A novel approach to explore natural genetic variation
- Case study: domestication of a tomato wild relative

Perspectives

- 1- Ideotype breeding and *de novo* domestication are conceptually different to conventional breeding
- 2- They help avoid founder effect, linkage drag and reduced recombination rates
- 3- They could provide a fast pathway for increased resilience and nutritional content in crops
- 4- Both require a deeper understanding of the genes underlying key agronomic traits

Lab members

Maria Antonia Machado Barbosa - MSc Juliene dos Reis Moreira - PhD Jessenia Robledo Moncaleano - MSc João Victor Abreu Cerqueira - PhD Emmanuel Rezende Naves - PhD Bruno Luan Rosa - PhD

Collaborators (in these projects)

Lázaro Peres Universidade de São Paulo Wagner Otoni Universidade Federal de Viçosa

Dan Voytas University of Minnesota

Andrew Thompson Cranfield University

Acknowledgements

UK Research and Innovation

www.fisiologiavegetal.ufv.br