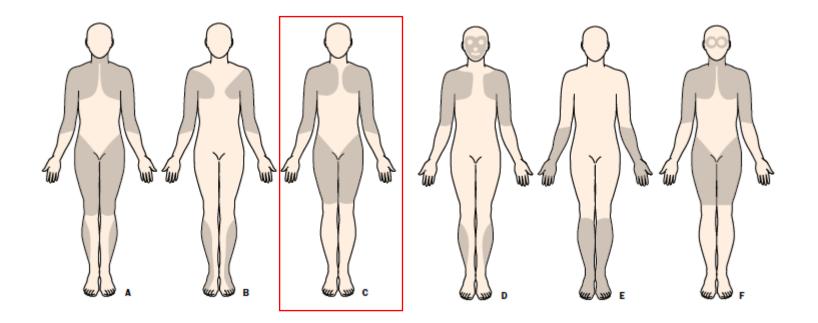


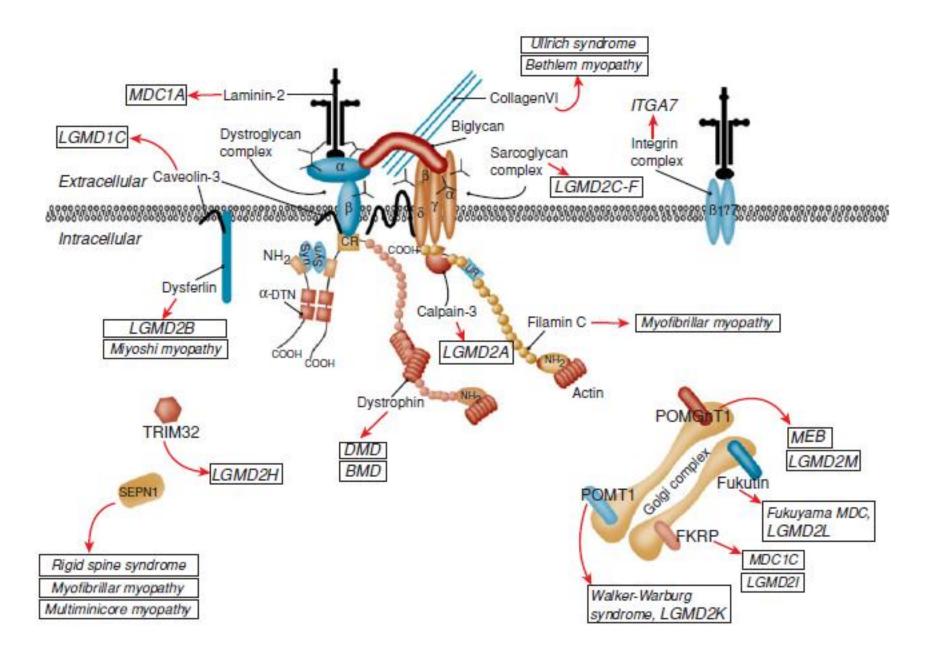
Clinicogenetic lessons from 370 patients with autosomal recessive limb-girdle muscular dystrophy

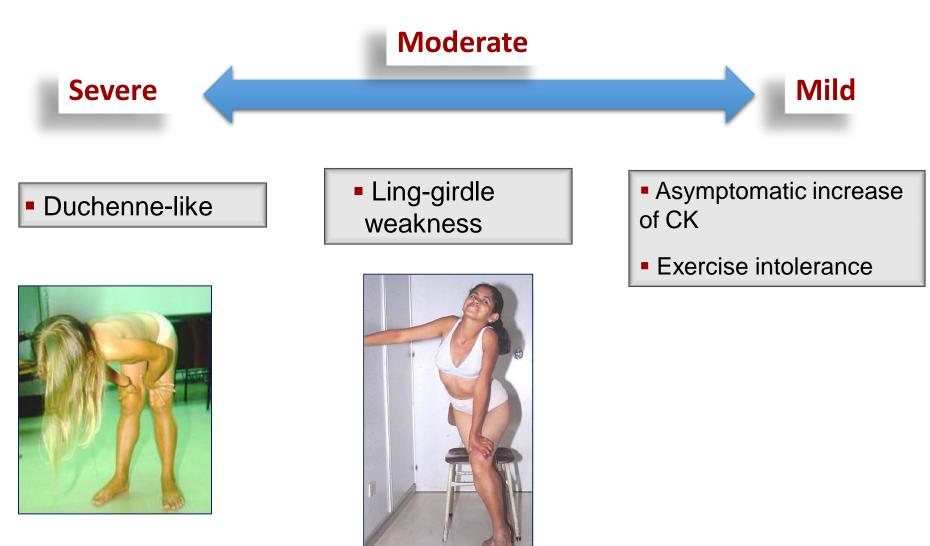
Jonas Alex Morales Saute

Medical Genetics Service Hospital de Clinicas de Porto Alegre (HCPA) Coordinator of the Reference Center in Rare Diseases - HCPA PI of NeMuG – Neuromuscular Genetics Research Group Universidade Federal do Rio Grande do Sul Brazil

October, 9th 2019






Limb girdle muscular dystrophies (LGMD)

- Heterogeneous group of genetic disorders
- Predominant proximal muscle weakness starting after independent ambulation is attained

Clinical variability in LGMD

Cortesy of Dr. Zanoteli E

Neuromusc. Disord., Vol. 5. No. 4, pp. 337-343, 1995 Copyright & Elsevier Science Lid Printed in Great Britain. All rights reserved 0960-8966/95 39.50 + 0.00

0960-8966(95)00005-4 WORKSHOP REPORT

THE LIMB-GIRDLE MUSCULAR DYSTROPHIES — PROPOSAL FOR A NEW NOMENCLATURE

30TH AND 31ST ENMC INTERNATIONAL WORKSHOPS, NAARDEN, THE NETHERLANDS, HELD 6–8 JANUARY 1995

Available online at www.sciencedirect.com

ScienceDirect

Neuromuscular Disorders 28 (2018) 702-710

Workshop report

229th ENMC international workshop: Limb girdle muscular dystrophies – Nomenclature and reformed classification Naarden, the Netherlands, 17–19 March 2017

Volker Straub^{a,*}, Alexander Murphy^a, Bjarne Udd^{b,c,d}, on behalf of the LGMD workshop study group

Old name	Gene	Proposed new nomenclature	Reason for exclusion	
LGMD 1A	Myot	Myofibrillar myopathy	Distal weakness	
LGMD 1B	LMNA	Emery–Dreifuss muscular dystrophy (EDMD)	High risk of cardiac arrhythmias; EDMD phenotype	
LGMD 1C	CAV3	Rippling muscle disease	Main clinical features rippling muscle disease and myalgia	
LGMD 1D	DNAJB6	LGMD D1 DNAJB6-related		~10%
LGMD 1E	DES	Myofibrillar myopathy	Primarily false linkage; distal weakness and cardiomyopathy	
LGMD 1F	TNP03	LGMD D2 TNP03-related		
LGMD 1G	HNRNPDL	LGMD D3 HNRNPDL-related		
LGMD 1H	?	Not confirmed	False linkage	
LGMD 1I	CAPN	LGMD D4 calpain3-related	_	
LGMD 2A	CAPN	LGMD R1 calpain3-related]	
LGMD 2B	DYSF	LGMD R2 dysferlin-related		
LGMD 2C	SGCG	LGMD R5 γ-sarcoglycan-related ^a		
LGMD 2D	SGCA	LGMD R3 α-sarcoglycan-related		
LGMD 2E	SGCB	LGMD R4 β -sarcoglycan-related		
LGMD 2F	SGCD	LGMD R6 δ-sarcoglycan-related		
LGMD 2G	TCAP	LGMD R7 telethonin-related	~90%	
LGMD 2H	TRIM32	LGMD R8 TRIM 32-related	90%	
LGMD 2I	FKRP	LGMD R9 FKRP-related		
LGMD 2J	TTN	LGMD R10 titin-related		
LGMD 2K	POMT1	LGMD R11 POMT1-related		
LGMD 2L	ANO5	LGMD R12 anoctamin5-related		
LGMD 2M	FKTN	LGMD R13 Fukutin-related		
LGMD 2N	POMT2	LGMD R14 POMT2-related	Straub V, et al	1 2040

LGMD Epidemiology - Worldwide

- > 1.63 per 100,000 individuals Systematic review
- 0.56 in Italy to 6.9 per 100,000 in Spain
- > Variable regional frequencies of LGMD2
- LGMD2A and LGMD2B → most common subtypes in Italy and USA
- LGMD2B \rightarrow most common in China
- LGMD2I (FKRP) \rightarrow most common in Denmark

Mah JK, et al. Can J Neurol Sci. 2016;43:163–77. Magri F, et al. Muscle Nerve. 2017;55:55–68 Nallamilli BRR, et al. Ann Clin Transl Neurol. 2018 Dec 1;5(12):1574-1587 Yu M, et al. PLoS One. 2017 Apr 12;12(4):e0175343 Sveen ML, et al. Ann Neurol. 2006;59:808

Lack of studies in Latin America

- Few single center studies reporting sarcoglycanopathies as the most frequent subtypes in Brazil
- Case reports or small series of specific subtypes in other Latin American countries

Passos-Bueno MR, et al. Am J Med Genet. 1999 Feb 19;82(5):392-8. Comerlato EA, et al. Arq Neuropsiquiatr. 2005 Jun;63(2A):235-45. Albuquerque, MAV. Arquivos de Neuro-Psiquiatria, 72(6), 481. Received: 9 May 2019 Revised: 21 June 2019 Accepted: 30 June 2019 DOI: 10.1111/cge.13597

ORIGINAL ARTICLE

Clinicogenetic lessons from 370 patients with autosomal recessive limb-girdle muscular dystrophy

```
Pablo B. Winckler<sup>1,2</sup> | André M.S. da Silva<sup>3</sup> | Antônio R. Coimbra-Neto<sup>4,5</sup> |
Elmano Carvalho<sup>6</sup> | Eduardo B.U. Cavalcanti<sup>7</sup> | Cláudia F.R. Sobreira<sup>8</sup> |
Carlo D. Marrone<sup>9,10</sup> | Marcela C. Machado-Costa<sup>11</sup> | Alzira A.S. Carvalho<sup>12</sup> |
Raimunda H.F. Feio<sup>13</sup> | Cleonísio L. Rodrigues<sup>14</sup> | Marcus V.M. Gonçalves<sup>15</sup> |
Renata B. Tenório<sup>16</sup> | Rodrigo H. Mendonça<sup>3</sup> | Ana Cotta<sup>6</sup> | Júlia F.O. Paim<sup>6</sup> |
Cynthia Costa e Silva<sup>7</sup> | Camila de Aquino Cruz<sup>8</sup> | Marjory I. Bená<sup>8</sup> |
Daniel F.A. Betancur<sup>9</sup> | Antonette S. El Husny<sup>13,17</sup> | Isabel C.N. de Souza<sup>13</sup> |
Regina C.B. Duarte<sup>18,19</sup> | Umbertina C. Reed<sup>3</sup> | Márcia L.F. Chaves<sup>1,2,20</sup> |
Edmar Zanoteli<sup>3</sup> | Marcondes C. França Jr<sup>4,5</sup> ) | Jonas A. Saute<sup>1,2,16,20</sup> )
```

To characterize the clinical, molecular and epidemiological information regarding LGMD2 in Brazil

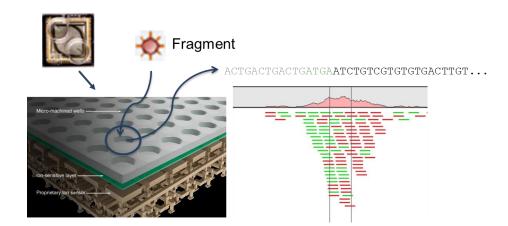
WILEY

- To provide genotype-phenotype correlation, prognostic and natural history information of most frequent subtypes
- To understand better disease natural history and to design better clinical trials for LGMD2

Methods

- Design: multicenter, historical cohort study at 13 neuromuscular disorders centers in Brazil: 3 centers from South, 5 centers from Southeast, 1 center from Midwest, 2 centers from Northeast, and 2 centers from the North region.
- Period: Index cases and affected relatives data from consecutive families were reviewed from July 2017 to August 2018

Methods


> Eligibility criteria:

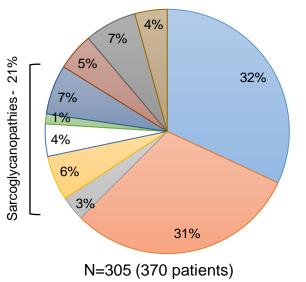
• Inclusion criteria:

Clinical suspicion of LGMD and the presence of at least one of the following criteria

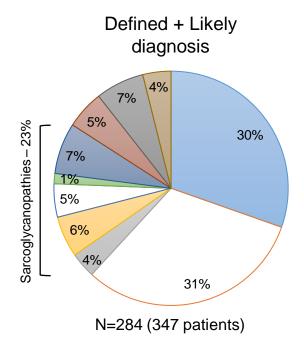
- presence of at least a likely pathogenic variant in a LGMD2 gene
- LGMD2 subtype diagnosis based on muscle immunohistochemistry (IHC) or western blot (WB) analysis.
- Exclusion criteria:
- Patients with GAA pathogenic variants

Methods

Molecular Analysis

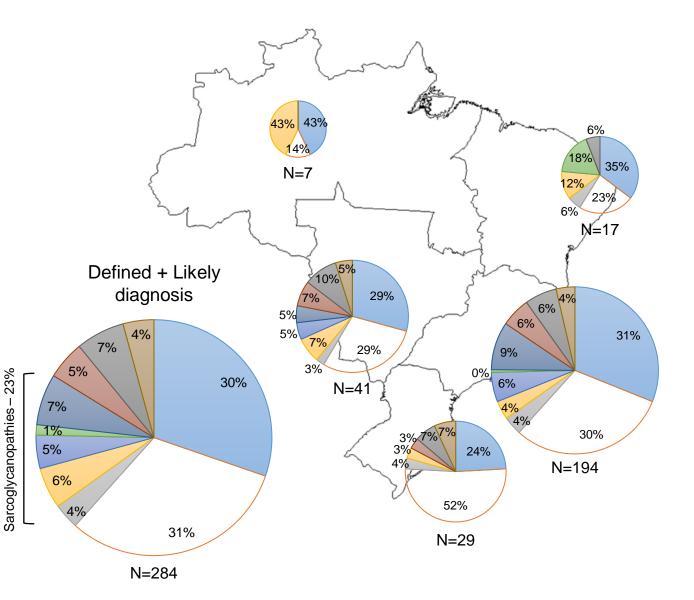

- Most centers → commercial targeted NGS panel including ANO5, CAPN3, DYSF, FKRP, SGCA, SGCB, SGCD, SGCG and TCAP.

Ethics


- GPPG-HCPA/17-0340; HGF-1.347.489

Results – 370 LGMD2 patients

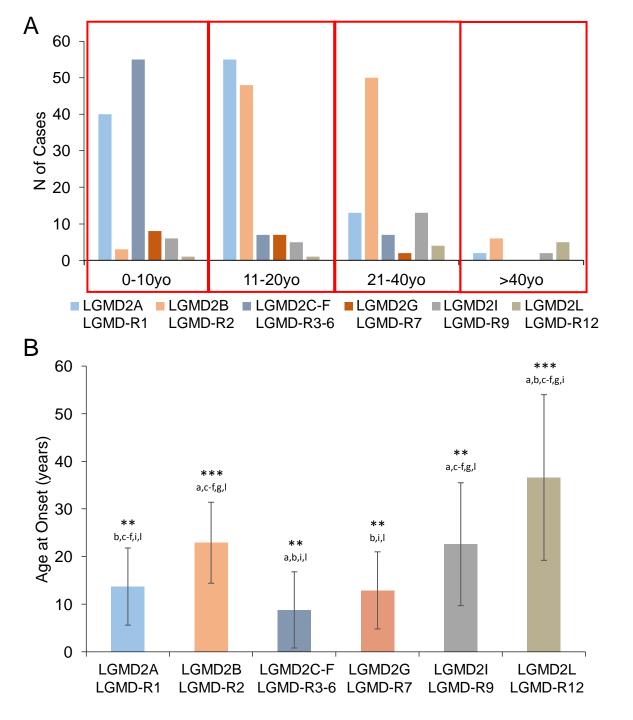
All index cases



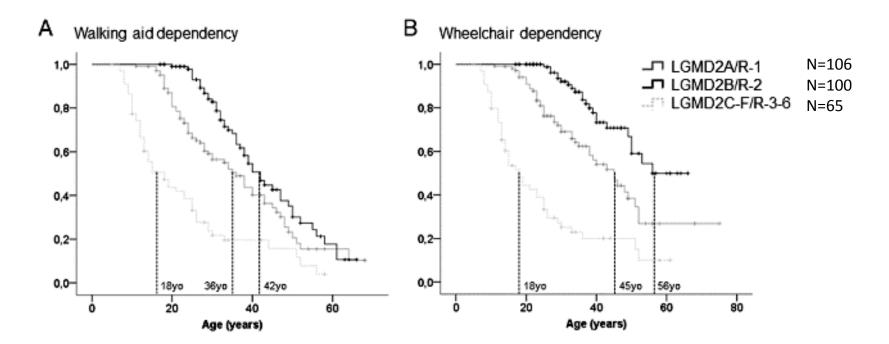
- LGMD2A/R-1
- LGMD2B/R-2
- LGMD2C/R-5
- LGMD2D/R-3
- LGMD2E/R-4
- LGMD2F/R-6
- LGMD2C-F/R-3-6
- LGMD2G/R-7
- LGMD2I/R-9
- LGMD2L/R-12

Results

LGMD2A/R-1 LGMD2B/R-2 LGMD2C/R-5 LGMD2D/R-3 LGMD2E/R-4 LGMD2F/R-6 LGMD2C-F/R-3-6 LGMD2G/R-7 LGMD2I/R-9 LGMD2L/R-12

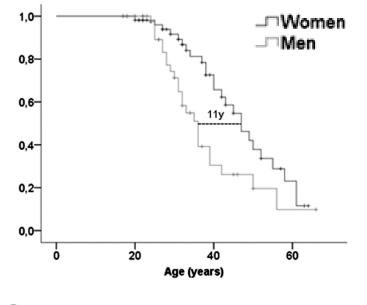

Results – molecular Analysis

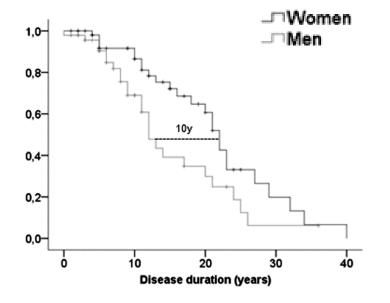
- 119 different disease-related variants identified
- 37 novel variants


Cono	Nucleatide abang-	AA abango	Mutation	AF ¹	AF ²	SIFT .	Poly.	мт	CADD	MCAP	GERP	Segre	Eu	nctional Form	N ⁴	Leid		linVar	ACMG Cla	ssification
Gene	Nucleotide change	AA change	type	AF	AF-	SIFT	hen2	MI	CADD	MCAP	++8	gation	E	ridence ram	N.	Leid	en 🕻	invar	criteria ⁶	ssification
DYSF	c.855+1G>A	-	Splice Site	0	0	NA	NA	1	31	NA	4	.46	Yes	(dysferlin absent)	1	2	No	No	PVS1,PS3, PM2	Pathogen
DYSF	c.1163_1165dupCCG	p.Ala388dup	Small Duplication	0	0	NA	NA	0.99	N/	NA NA	5	.47	NA	NA	1	1	No	No	PM1,PM2, PM4	Likely. Pathogen
DYSF	c.1165G>T	p.Glu389*	Nonsense	0	0	NA	NA	1	48	i NA	5	.47	NA	NA	1	1	No	No	PVS1,PM2	Likely. Pathogeni
DYSF	c.2218delC	p.Leu740Cysfs*9	Frameshift	0	0	NA	NA	1	N/	A NA	3	.54	NA	NA	1	1	No	No	PVS1,PM2	Likely. Pathogeni
DYSF	c.2901dupC	p.Met968Hisfs*3	Frameshift	0	0	NA	NA	1	NA	A NA	3	.37	NA	Yes (dysferlin reduced)	3	2	No	No	PVS1,PS3, PM2	Pathogeni
DYSF	c.2996G>A	p.Trp999*	Nonsense	0	0	NA	NA	1	41	NA	4	.64	Yes	Yes (dysferlin absent)	1	2	Yes	No	PVS1,PS3, PM2	Pathogeni
DYSF	c.3071C>T	p.Pro1024Leu	Missense	0.00009	0	0.01	1	0.99	24	0.23	81 4	.14	NA	NA	1	1	No	Yes (1 VUS)	PM2, PP3	VUS
DYSF	c.3115C>T	p.Arg1039Trp	Missense	0.00002	0	0.02	1	0.99	25.	5 0.47	23	.27	NA	NA	1	1	Yes (dysferlin absent - IHC)	Yes (2 VUS)	PS3,PM2, PP3	Likely. Pathogen
DYSF	c.3235_3236insAGGCGG	p.Phe1079*	In-frame Insertion (Nonsense)	0	0	NA	NA	1	NA	A NA	. 5	5.6	NA	NA	1	1	No	No	PVS1,PM2	Likely. Pathogen
DYSF	c.3280T>C	p.Trp1094Arg	Missense	0	0	0.01	0.997	7 0.99	29.	9 0.20			NA	NA	1	1	No	No	PM2, PP3	VUS
DYSF	c.3486_3487delGG	p.Asp1163Profs*11	Frameshift	0	0	NA	NA	1	NA	NA NA	(1	.37 .15- .59)	NA	NA	1	1	No	No	PVS1,PM2	Likely. Pathogeni
FKRP	c.1403T>C	p.Phe468Ser	Missense	0	0	0	0.879	9 0.99	29.	1 0.73	30 5	.44	NA	NA	1	1	NA	No	PM2, PP3	VUS
SGCA	c.502G>A	p.Gly168Arg	Missense	0.00001	0	0.09	0.755	5 0.99	24.	1 0.55	51 4	.58	NA	NA	1	1	No	Yes (1 VUS)	PM2	VUS
SGCB	c.753+5G>A	-	Intronic	0	0	NA	NA	1	21.	7 N.A	5	.12	NA	NA	1	1	Yes (1 case)	No	PM2 PP37	VUS
SGCG	c.629A>G	p.His210Arg	Missense	0.00001	0	0.13	0.012	2 0.99	14.3	29 0.07	' 9 4	.44	NA	Yes (y- sarcoglycan deficient)	1	1	Yes (2 cases)	No	PS3,PM2, PP3	Likely. Pathogeni

Allele frequencies on ¹gnomAD and ²1000 genomes browsers; ³GERP++ data is shown as mean (standard deviation) or raw value;⁴ total number of individuals; ⁵ American College of Medical Genetics and Genomics criteria, Richards et al, 2015; ⁹ polymorphism prediction; ⁷ alteration of the WT donor site on Human Splicing Finder 3.1 (<u>http://www.umd.be/HSF30</u>). AA, amino acid; AF, allele frequency; Fam, families; IHC, immunohistochemistry; MT, Mutation Taster; NA, not available; VUS, variant of unknown significance; alteration of the WT donor site (HSF 3.0); WB, Western Blot.

Results Age at Onset

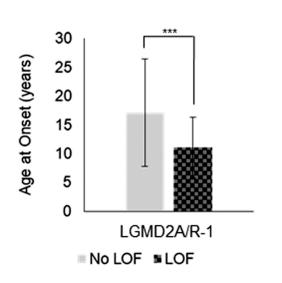

Results – Disease Progression LGMD2A, LGMD2B and sarcoglycanopathies


Results Sex-related effect on disease progression LGMD2B

LGMD2B N=100

A Walking aid dependency

C Walking aid dependency


Results - Genotype–Phenotype Correlations LGMD2A

N=110

30 25 20 15 10 5 0 LGMD2A/R-1 No LOF = 1 LOF = 2 LOF

В

А

No diferences for LGMD2B/LGMD-R2-dysferlin-related (N=45) and sarcoglycanopathies (N=46)

Results - Cardiac and Respiratory Involvement

	LGMD2A/R1	LGMD2B/R2	LGMD2C-F/ R3-6	LGMD2G/R7	LGMD2I/R9	LGMD2L/R12	
Affected gene	CAPN3	DYSF	SGCA-B-G-D	TCAP	FKRP	ANO5	
Heart conduction	1/105	1/83		0/17	c /20 (20%)	0/11	
disorder (%)	(1%)	(1.2%)	0/53 (0%)	(0%)	6/20 (30%)	(0%)	
Structural heart	0/01 (0%)	1 (02 (1 20/)		0/17 (00/)	0/20 (40%)	0/11	
disease (%)	0/91 (0%)	1/83 (1.2%)	3/51 (5.8%)	0/17 (0%)	8/20 (40%)	(0%)	
Respiratory		12/00/16 20/)	22/39	3/13	0/14/64 20/)	2/9	
Involvement (%)	22/102 (21.5%)	13/80 (16.2%)	(56.4%)	(23.1%)	9/14 (64.3%)	(22.2%)	
Lung restriction							
severity ^d							
Mild	16/100 (16%)	9/79 (11.4%)	9/35 (25.7%)	2/13 (15.4%)	4/11 (36.4%)	1/9 (11.1%)	
Moderate	6/100 (6%)	2/79 (2.5%)	3/35 (8.6%)	1/13 (7.7%)	0/11 (0%)	0/9 (0%)	
Severe	2/100 (2%)	1/79 (1.3%)	6/35 (17.1%)	0/13 (0%)	5/11 (45.5%)	1/9 (11.1%)	
Ventilatory	2/104	1/105	4/38	0/15	2/22	0/8	
Support (%)	(1.9%)	(1%)	(10.5%)	(0%)	(9.1%)	(0%)	

Discussion - Epidemiology

- ➤ LGMD2A and LGMD2B are the most frequent subtypes in Brazil → 30% of families each
- Epidemiology
- \leq 10 years-old: sarcoglycanopathies
- 11 and 20 years-old: LGMD2A followed by LGMD2B
- 21 and 40 years-old: LGMD2B
- > 40 years-old: LGMD2B and LGMD2L

Discussion – Epidemiology

Similar profile to recent large cohorts from Italy and USA

Magri F, et al. Muscle Nerve. 2017;55:55–68. Nallamilli BRR, et al. Ann Clin Transl Neurol. 2018 Dec 1;5(12):1574-1587.

- Differed from previous Brazilian reports
- São Paulo (Genoma), single center, 37 children → 40.5% sarcoglycanopathies
- Curitiba, single center, 56 patients, IHQ only → 32% sarcoglycanopathies, followed by LGMD2B 14.3%
- São Paulo (USP), single center, 40 families → 55% sarcoglycanopathies, followed by LGMD2B 25%

Passos-Bueno MR, et al. Am J Med Genet. 1999 Feb 19;82(5):392-8. Comerlato EA, et al. Arq Neuropsiquiatr. 2005 Jun;63(2A):235-45. Albuquerque, MAV. Arquivos de Neuro-Psiquiatria, 72(6), 481. Vainzof M, et al. J Neurol Sci. 1999 Mar 15;164(1):44-9.

Discussion – Epidemiology

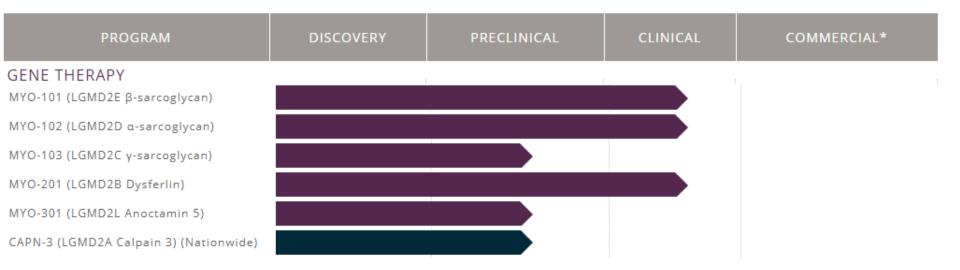
➤ 5% of our families had LGMD2G → ultra rare subtype worldwide

- all families were homozygous for the p.Gln53* variant in *TCAP – NMD therapies?*

Moreira ES, et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet. 2000 Feb;24(2):163-6.

Discussion - disease progression and its modifiers – sex-effect in LGMD2B

- Earlier ages and disease durations at walking aid dependency for men than for women
- ➢ Higher fiber atrophy factor in males than females with LGMD2B → male patients had lower muscle fiber diameter and cross-sectional area and higher atrophic factor than male controls → affected and control females did not differ in this parameters
- Future clinical trials in LGMD2B should consider to control the randomization by sex


Discussion - disease progression and its modifiers - genotype

- LGMD2A patients with one or two truncating variants started earlier and progressed faster than patients without truncating variants.
- Similar findings for age at onset in a large Italian cohort. Effect on disease progression not tested.
- Another large sample study in LGMD2A (113 patients) found that patients with at least one missense variant started the disease later than patients with two truncating mutations. Inadequate analysis for effect on disease progression.
- Future clinical trials in LGMD2A/LGMD-R1-calpain3related should consider to control randomization according to genotype

Conclusion

- ➤ LGMD2A (111 patients) and LGMD2B (109 patients) → most frequent subtypes of LGMD2 in Brazil.
- Females with LGMD2B had a less severe progression to handicap than males
- LGMD2A patients with truncating variants had earlier disease onset and more severe progression to handicap
- Results of great importance to understand the epidemiology of LGMD2 in Brazil and Latin America
- Paramount to better design future natural history studies and clinical trials for LGMD2

SAREPTA PIPELINE

JAIN Foundation

Coalition to Cure Calpain 3

Overcoming Weakness with Strength

Thank you!

Brazilian Task force on NMDs

Genetic profile of Brazilian patients with dystrophinopathies

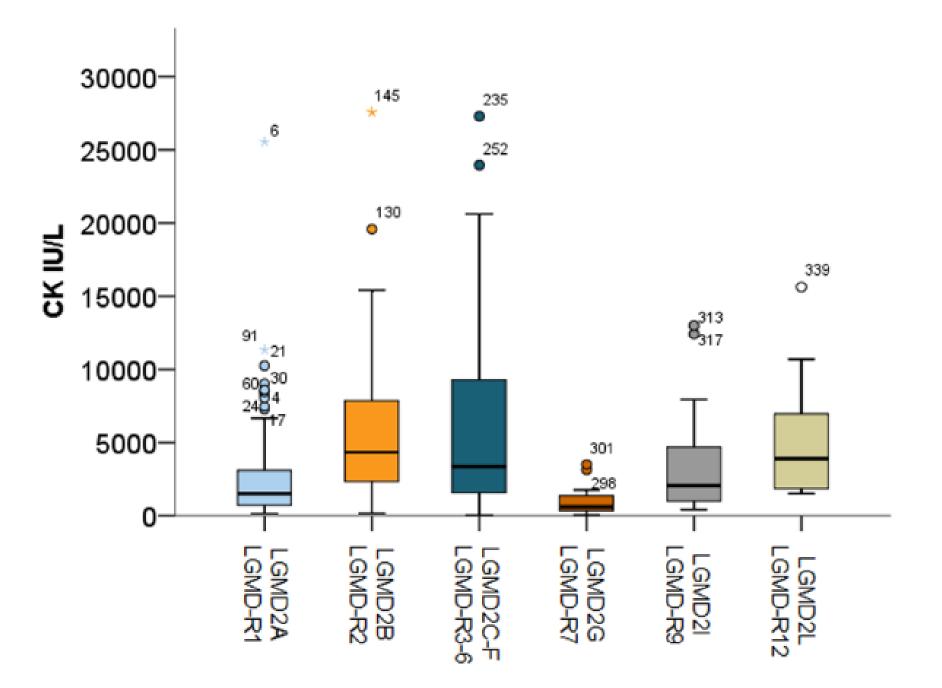
Paula Abreu Ducceschi de Almeida¹, Marcela Câmara Machado-Costa², Gabrielle Novais Manzoli², Leticia Sauma Ferreira¹, Maria do Carmo de Souza Rodrigues⁴, Larissa Souza Mario Bueno^{2,3}, Jonas Alex Morales Saute⁵, Filippo Pinto Vairo⁵, Ursula da Silveira Matte^{5,6}, Marina Siebert^{5,6}, Silvia Liliana Cossio^{5,6}, Gabriel S. Macedo⁵, Pablo Brea Winckler⁷, Michele Michelin Becker⁸, Lucas Vilas Boas Magalhães⁹, Marcus Vinicius Magno Gonçalves¹⁰, Carlo

Domenico Marrone¹¹, Anamarli Nucci¹, Marcondes C. França Jr¹

Pablo Brea Winckler, MD, MSc^{1,2}; André Macedo Serafim da Silva, MD³; Antônio Rodrigues Coimbra Neto, MD^{4,5}; Elmano Carvalho, MD, PhD⁶; Eduardo Boiteux Uchôa Cavalcanti, MD, MSc⁷; Cláudia Ferreira da Rosa Sobreira, MD, PhD⁸; Carlo Domenico Marrone, MD, Phd⁹; Marcela Câmara Machado-Costa, MD, MSc¹⁰; Alzira Alves de Siqueira Carvalho, MD, PhD¹¹; Raimunda Helena Ferreira Feio, MD, MSc¹²; Cleonísio Leite Rodrigues, MD, PhD¹³; Marcus Vinicius Magno Gonçalves, MD¹⁴; Renata Barreto Tenório, MD¹⁵; Rodrigo de Holanda Mendonça, MD³; Ana Cotta, MD, PhD⁶; Júlia Filardi de Oliveira Paim, MD, MSc⁶; Cynthia Costa e Silva⁷; Camila de Aquino Cruz, MD, MSc⁸; Marjory Irineu Bená, MSc⁸; Daniel Fernando Arias Betancur, MD⁹; Antonette Souto El Husny, MD, PhD^{12,16}; Isabel Cristina Neves de Souza, MD, PhD¹²; Regina Célia Beltrão Duarte, MD, MSc^{17,18}; Umbertina Conti Reed, MD, PhD3; Márcia Lorena Fagundes Chaves, MD, PhD^{1,2,19}; Edmar Zanoteli, MD, PhD³; Marcondes Cavalcante França Junior, MD, PhD^{4,5}; Jonas Alex Morales Saute, MD, PhD^{1,2,15,19,*}

Title: Clinical and molecular findings in a cohort of Brazilian patients with ANO5-related myopathy

Authors: André Macedo Serafim da Silva, MD¹; Antônio Rodrigues Coimbra-Neto, MD²; Paulo Victor Sgobbi Souza, MD³; Pablo Brea Winckler, MD, MSc⁴; Marcus Vinicius Magno Gonçalves, MD⁵; Eduardo Boiteux Uchôa Cavalcanti, MD⁶; Alzira Alves de Siqueira Carvalho, MD, PhD⁷; Cláudia Ferreira da Rosa Sobreira, MD, PhD⁸; Clara Gontijo Camelo, MD¹; Rodrigo de Holanda Mendonça, MD¹; Eduardo de Paula Estephan. MD¹; Umbertina Conti Reed, MD, PhD¹; Marcela Câmara Machado-Costa, MD, MSc⁹; Mario Emilio Teixeira Dourado-Junior, MD, PhD¹⁰; Vanessa Caldeira Pereira, MD¹¹; Marcelo Maroco Cruzeiro, MD, PhD¹²; Paulo Victor Partezani Helito. MD¹³; Lais Uyeda Aivazoglou, MD, MSc¹⁴; Wladimir Bocca Vieira de Rezende Pinto, MD³; Bruno Mattos Lombardi Badia, MD³; Luiz Henrique Libardi, MD³; Mario Teruo Xanagiura, MD³; Acary Souza Bulle Oliveira, MD, PhD³; Jonas Alex Morales Saute, MD, PhD^{1,15}; Marcondes Cavalcante Franca-Junior, MD, PhD²; Edmar Zanoteli, MD, PhD¹.



THANK YOU!! Contact: jsaute@hcpa.edu.br

