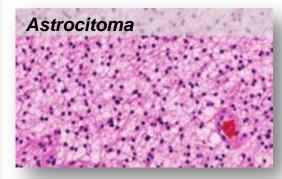
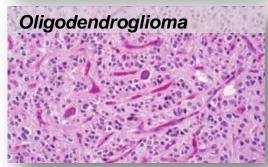


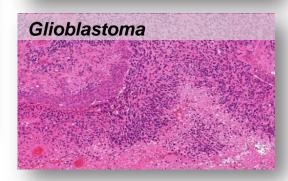
SIMPOSIO: FARMACOGENÓMICA Y MEDICINA DE PRECISIÓN

Biomarcadores moleculares en gliomas y su importancia en la farmacogenómica.

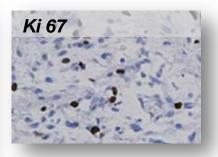
Germán R. Perez, PhD Gammalab. Grupo Gamma. Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR)

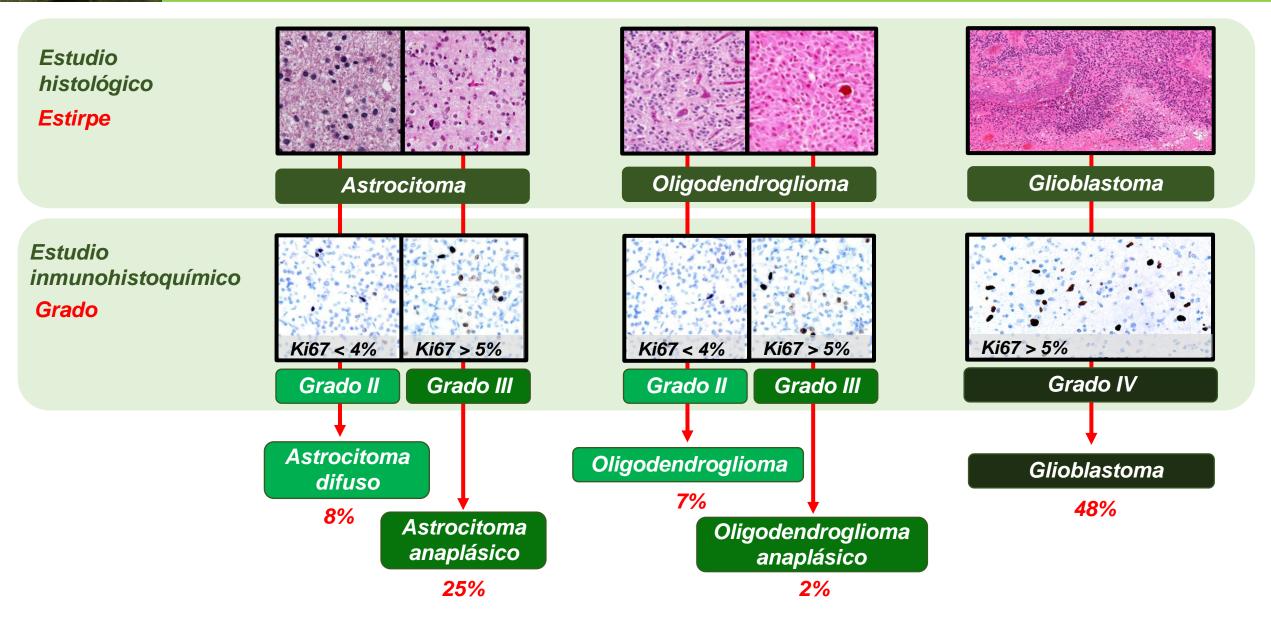



- Los **gliomas** son los tumores primarios del Sistema Nervioso Central más frecuentes en adultos (55 a 84 años).

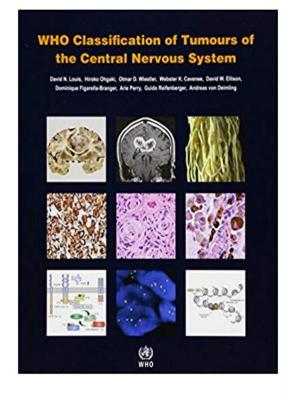

Tabla I: Distribución absoluta y relativa de casos incidentes de cáncer estimados por la IARC para Argentina en 2018 según localizaciones tumorales más frecuentes y sexo.

	AMBOS	SEXOS	VAR	ONES	MUJ	ERES		
SITIO TUMORAL	Casos	%	Casos	%	Casos	%		
Mama	21558	17,2	-	-	21538	32,6		
Colon-recto	15692	12,6	8527	14,5	7165	10,8		
Próstata	11600	9,3	11600	19,7	-	-		
Pulmón	11595	9,3	7111	12.1	4484	6,8		
Riñon	4889	3,9	3165	5,4	1724	2,6		
Páncreas	4878	3,9	2302	3,9	2576	3,9		
Cervix	4484	3,6	-	-	4484	6,8		
Estómago	3980	3,2	2536	4,3	1444	2,2		
Vejiga	3631	2,9	2789	4,7	842	1,3		
Tiroides	3482	2,8	467	0,8	3015	4,6		
Linfoma No-Hodgkin	3405	2,7	1938	3,3	1467	2,2		
Encéfalo y otros SNC	3001	2,4	1587	2,7	1414	2,1		
Leucemias	2934	2,3	1569	2,7	1365	2,1		
Cuerpo de útero	2412	1,9	-	-	2412	3,6		
Higado	2343	1,9	1364	2,3	979	1,5		
Ovario	2330	1,9	-	-	2330	3,5		
Esófago	2299	1,8	1505	2,6	794	1,2		
Otros	12224	9,8	8103	13,8	4121	6,2		
Total	125014	100,0	58883	100.0	66131	100.0		

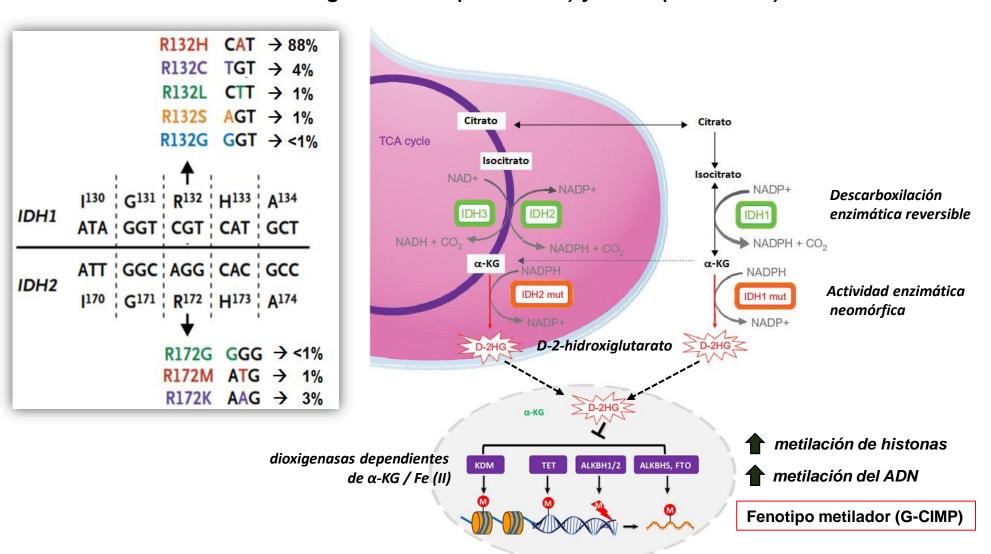

Estirpe



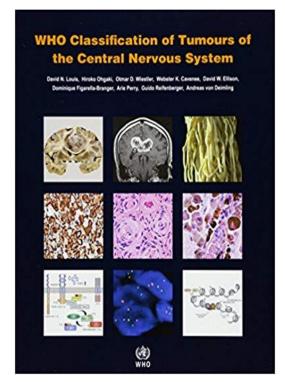
Grado


Grado I	Lesión con bajo potencial proliferativo, crecimiento expansivo, posibilidad de cura luego de la resección quirúrgica.
Grado II	Lesión con bajo potencial proliferativo, crecimiento infiltrativo y tendencia a la recurrencia. Progresión a lesión de mayor grado.
Grado III	Lesión con evidencia histológica de malignidad, mitosis, anaplasia y capacidad infiltrativa.
Grado IV	Lesión maligna, mitóticamente activa, tendencia a la necrosis y evolución rápida.

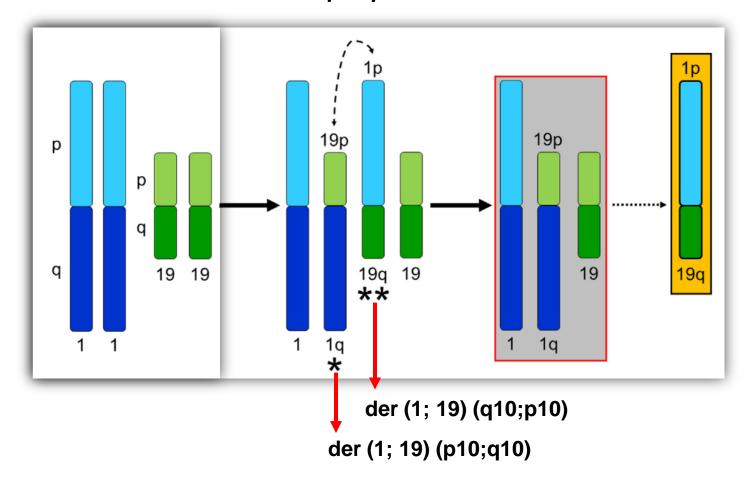
https://www.argentina.gob.ar/salud/instituto-nacional-del-cancer/estadisticas/incidencia



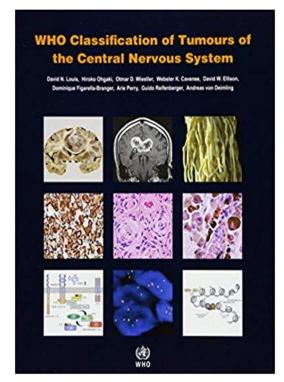
2016



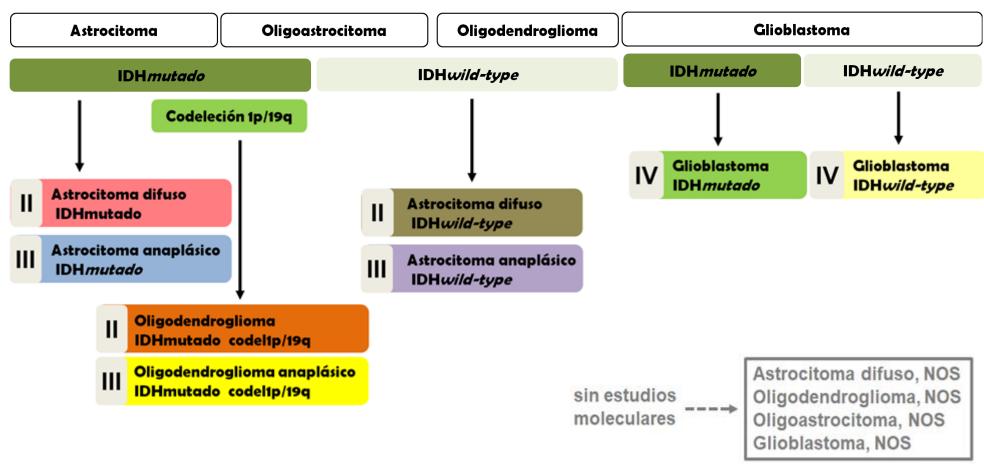
1. Detección de variantes en genes IDH-1 (codón 132) y IDH-2 (codón 172)

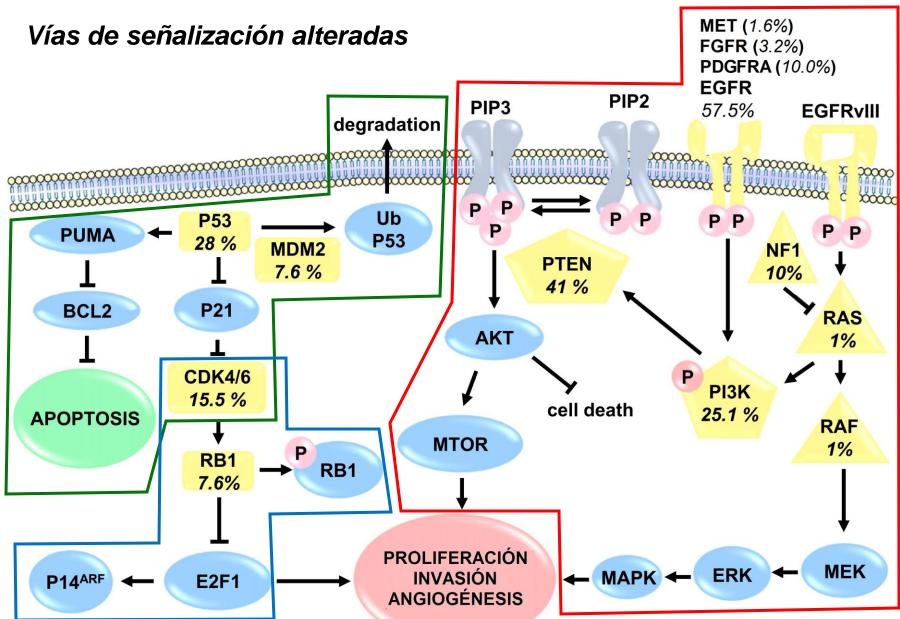


2016



2. Detección de la codeleción 1p19q




2016

Clasificación 2016 WHO

Vía de RTK/RAS/PI3K

45% mutación/amplificación en EGFR

13% amplificación en PDGFRA

36% mutación/deleción en PTEN

18% mutación/deleción en NF1

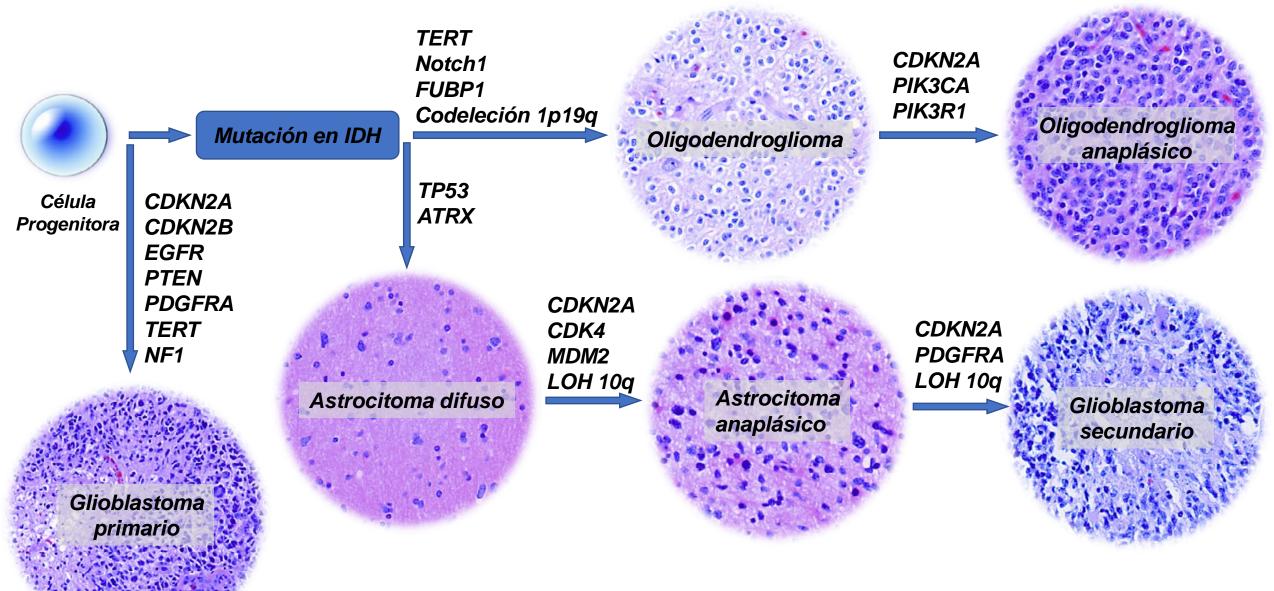
Vía de P53

49% mutación/deleción en CDKN2A

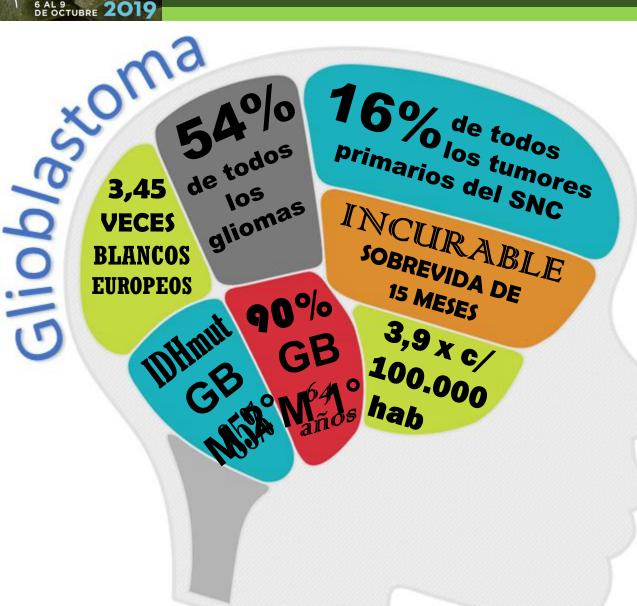
35% mutación/deleción en TP53

14% amplificación en MDM2

Vía de Rb


52% mutación/deleción en CDKN2A

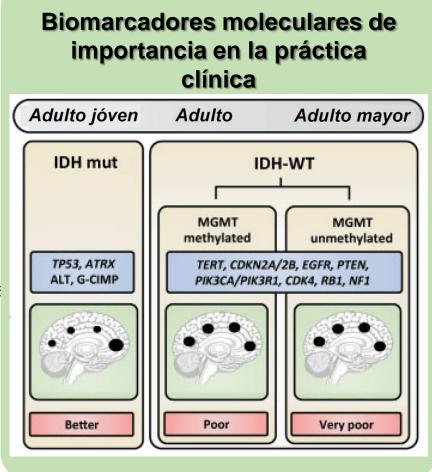
47% deleción en CDKN2B


18% amplificación en CDK4

11% mutación/deleción en RB1

Principales diferencias genómicas, epigenómicas, transcriptómicas y proteómicas en GBM

	GBM primario	GBM secundario
Alteraciones genéticas	 ✓ amplificación de EGFR ✓ deleción de CDKN2A-p16^{INK4a} ✓ LOH del cromosoma 10 ✓ mutación en PTEN 	 ✓ mutación en IDH1/2 ✓ LOH de 22q, 13q, 19q ✓ mutación en TP53
Perfiles de expresión gen/proteína	 ✓ Proteína asociada a centrosomas 350 ✓ Enolasa 1 ✓ Fas ✓ IGFBP2 ✓ MMP-9 ✓ Survivin ✓ Precursor de tenascina-X ✓ VEGF ✓ TK relacionado con VEGF_{fms} 	✓ ADAMTS-19 ✓ ASCL1 ✓ Precursor ST-cadherina ✓ DUOX2 ✓ ERCC6 ✓ HNRPA3 ✓ Pérdida de TIMP-3 ✓ PDGFR ✓ TP53 ✓ Precursor de WNT-11k
Metilación de promotores		✓ CDKN2A-p14ARF ✓ CDKN2A-p16INK4a ✓ MGMT ✓ RB ✓ TIMP-3



Subgrupos genéticos de GBM tienen perfiles únicos de expresión

-4-1				
	Proneural/Neural	G-CIMP	Clásico	Mesenquimal
Frecuencia	31%	7%	25%	27%
Edad	Adultos jóvenes	Adultos jóvenes	Adultos mayores	Adultos mayores
Pronóstico	Bueno	Bueno	Malo	Malo
Proceso activo	Neurogénesis	Neurogénesis	Proliferación	Angiogénesis
Marcador celular	Neuroblasto	Neuroblasto y no neuroblasto	Stem cell	Stem cell
Aberraciones cromosómicas	Normal cr. 7 y cr. 10	Ganancia de cr. 8 Ganancia de cr. 10	Ganancia de cr. 7 Pérdida de cr. 10	Ganancia de cr. 7 Pérdida de cr. 10
Loci EGFR/PTEN	EGFR normal PTEN intacto	EGFR normal PTEN intacto	Amplificación de EGFR Pérdida de PTEN	Amplificación de EGFR Pérdida de PTEN
Vía alterada	NOTCH, TP53, PDGFRA, PIK3C, IDH	МҮС	AKT, CDKN2A	Met, NF1

TCGA, 2008; Jiao Y, 2012; De Vleeschouwer_2018

Secuenciación del ARN single cell -> los GBM comprenden subpoblaciones de células tumorales que exhiben la mayoría o la totalidad de estos subtipos de expresión.

Tratamiento del GBM

Resección + radioterapia post-operatoria (60 Gy) + Temozolomida (75mg/m² → 150-200 mg/m²)

Estudio (año)	Esquema tto	n	Sobrevida (meses)
Stupp et al (2005), EORTC/NCIC	RT control TMZ/RT	286 287	12.1 14.6 (p < 0.0001)
Gilbert et al (2013), RTOG 0525	TMZ/RT dosis standard TMZ/RT dosis mayor	411 422	16.6 14.9 (p < 0.63)
Gilbert et al (2014), RTOG 0825	TMZ/RT TMZ/RT/Bevacizumab	309 312	16.1 15.7 (p < 0.21)
Chinot et al (2014), AVAglio	TMZ/RT TMZ/RT/Bevacizumab	463 458	16.7 16.8 (p < 0.10)
Stupp et al (2014), CENTRICa	TMZ/RT TMZ/RT/Cilengitide	273 272	26.3 26.3 (p < 0.86)
Stupp et al (2017), EF-14	TMZ/RT TMZ/RT/TTF	229 466	16.0 20.9 (p < 0.001)

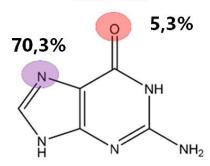
<u>Bevacizumab:</u> anticuerpo monoclonal humanizado contra el factor de crecimiento endotelial vascular <u>Cilengitida:</u> inhibidor de la integrina con actividad antiangiogénica.

Campos de tratamiento con radiofrecuencia (TTF): >18 hs/día en cuero cabelludo afeitado.

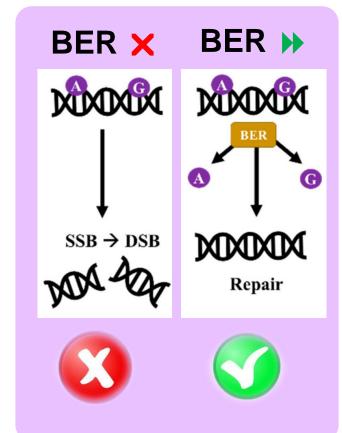
Tratamiento del GBM

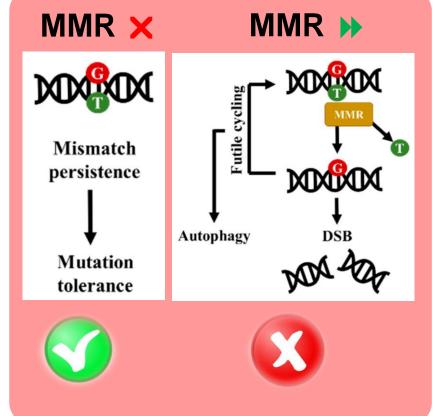
Temozolomida agente alquilante que pertenece al grupo de los compuestos de triazeno.

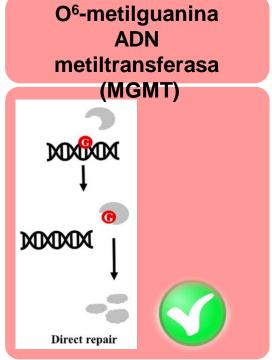
Transfiere sus grupos alquilo electrofílicos a átomos de nitrógeno y oxígeno extracíclico de las bases de ADN.



Temozolomida

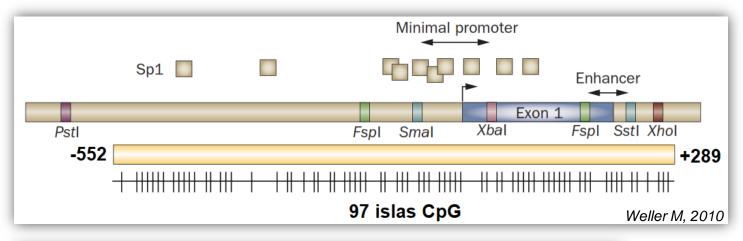

Adenina

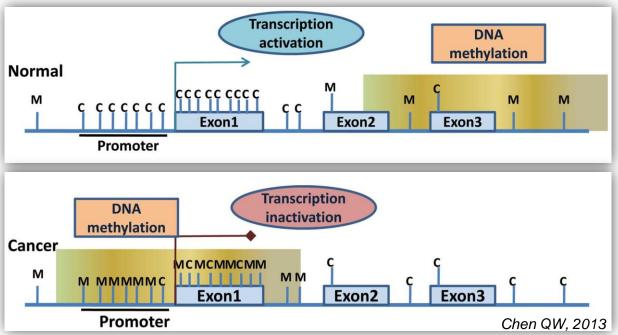

Guanina

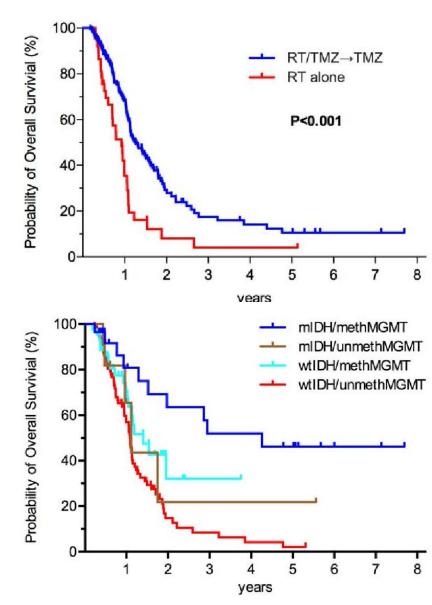


Reparación por escisión de base (BER)

Reparacion de desapareamiento de bases (MMR)







O⁶-metilguanina ADN metiltransferasa (MGMT)

Diferentes tratamientos de GBM basados en mecanismos químicos e inmunológicos

Anti-angiogénicos

Targets VEGF

Avastin (bevacizumab),
Altiratinib, Panobinostat
Targets TAEC
Trebanaib
Disruptores de kinasas
Enzastaurin
Inhibidores de PDGFR
Crenolabib, AZD2171,
Tandutinib
Inhibidores de AuroraA
TC-A2317

Inhibidor de kinasa

Inhibidor PI3K / mTor GDC-0084

Molecular targeting

Modificadores del ADN
Mibefradil, Gliadel
Bloqueantes de mitosis
ANG 1005
Inhibidores de EGFR
Afatinib
Desactivadores NFkB
CBL0137 (Curaxins)

Inhibición de miRNA

Targets de miRNAS
TargoMIR

Terapia génica

Genes activadores de citotoxicidad TOCA511 + TOCAFC

Inmunoterapia activa (vacunas)

Vacuna con péptidos
Rindopepimut, SurVaxM
Vacuna autóloga
ICT-107, HSPPC-96,
Gliovac, IMA950, DCVax-L

Inhibidor de GBM stem cell

Targets de GBM stem cells ICT-107 (DC cells)

Terapia virales

Parvovirus oncolítico ParvOryx

Inmunoterapia pasiva (basada en anticuerpos)

Ab contra EGFR
Depatux-M, Asunercept
Ab contra PDGFRA
MEDI-575, MEDI-3617

Inmunoterapia pasiva

(basada inhibición check

point)
Neutralizante de CXCL12
DNOX-A12
Inhibidor IDO
Indoximod

Nanoterapia

Potenciador de Doxorubicina Nanocell

Clasificar los gliomas en subgrupos molecularmente homogéneos mediante la incorporación de biomarcadores moleculares, los cuales aportarán información del pronóstico y la predicción de respuesta al tratamiento.

- Pacientes entre 20-85 años que se hayan realizado una biopsia de tumor glial.
- Diagnóstico entre los años 2005 y 2017.
- Muestras de biopsias de archivo del Servicio de Anatomía Patológica del Hospital de Emergencias "Dr. Clemente Álvarez" y del Centro de Diagnóstico Patológico S.R.L.

CRITERIOS DE INCLUSIÓN

- Pacientes sometidos a una biopsia de tumor glial de SNC en los años estipulados.
- Con estudio histológico compatible con el diagnóstico de glioma.
- Se disponga con cantidad y calidad del material suficientes para la realización de estudios moleculares.
- Posean datos en la historia clínica.

CRITERIOS DE EXCLUSIÓN

- Individuos con estudio histológico no compatible con el diagnóstico de glioma.
- No se posea material suficiente para realizar todos los estudios moleculares.
- Con historia clínica incompleta.
- Individuos con más de un cáncer primario o diagnosticados post-mortem.

Criterios de inclusión

89 casos CDP (GG)

50 casos SAP (HECA)

139 CASOS TOTALES

Criterios de exclusión

119 CASOS TOTALES

n: 41

 \dotplus edad: 52 [22-80] años

⊿ n: 78

edad: 55 [23-83] años

Diagnóstico inicial

Criterios diagnósticos y grado Estudios IHQ realizados Estudios moleculares

Diagnóstico final integrado

Validado por 2 patólogos

Variantes en 132-IDH1 y 173-IDH2

INMUNOHISTOQUÍMICA

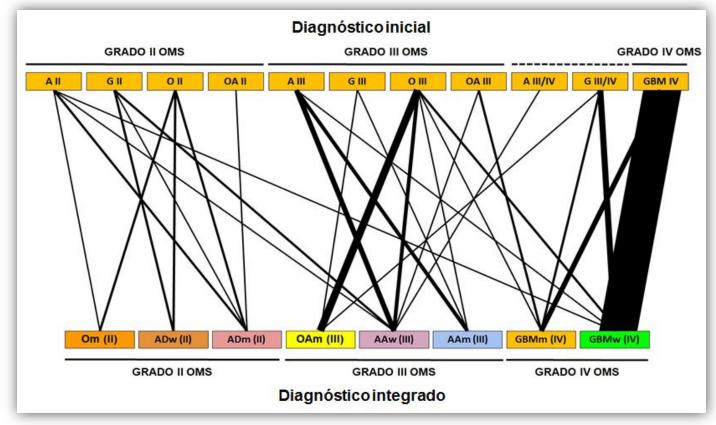
R132H en el gen IDH1

AMPLIFICACIÓN DE SONDAS DEPENDIENTE DE LIGANDOS MÚLTIPLES (MLPA)

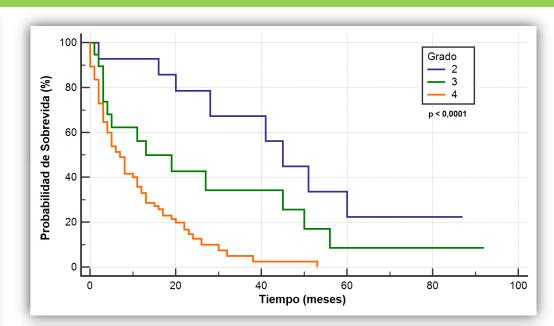
R132H/C en IDH1 + R172K/M en IDH2

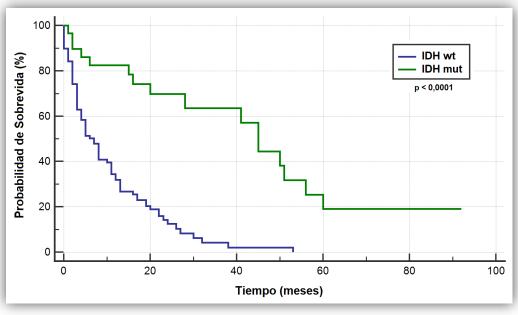
SECUENCIACIÓN DIRECTA

Variantes 132-IDH1 + 173-IDH2


Codeleción 1p/19q

AMPLIFICACIÓN DE SONDAS DEPENDIENTE DE LIGANDOS MÚLTIPLES (MLPA)


MÉTODO	POSITIVOS	NEGATIVOS	
IHQ	23	96	
MLPA	26	93	2c R132H + 1c R172K
SEQ	29	90	1c R132C + 1c R172G + 1c R17

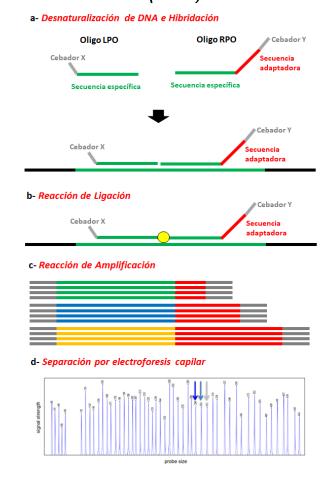

- II	Oligodendroglioma, IDH mut y codel 1p19q	Om	5 casos
III	Oligodendroglioma anaplásico, IDH1 mut y codel1p19q	OAm	3 casos
- 11	Astrocitoma difuso, IDH wt	ADw	2 casos
III	Astrocitoma anaplásico IDH wt	AAw	10 casos
- II	Astrocitoma difuso, IDH mut	ADm	8 casos
III	Astrocitoma anaplásico, IDH mut	AAm	6 casos
IV	GBM IDH mut	GBMm	7 casos
IV	GBM IDH wt	GBMw	78 casos

- ✓ Diagnóstico integrado permitió definir estirpe tumoral en todos los casos.
- √ Todos los casos con morfología dual resultaron ser Astrocitomas.
- ✓ La morfología oligodendroglial no fue determinante de estirpe, por lo cual se necesitan marcadores moleculares para definir el diagnóstico.
- ✓ Los criterios morfológicos de GBM fueron inequívocos.
- ✓ Los criterios morfológicos se modificaron en tumores de bajo grado.
- ✓ La población estudiada mantuvo la proporción de la incidencia de estos tumores.

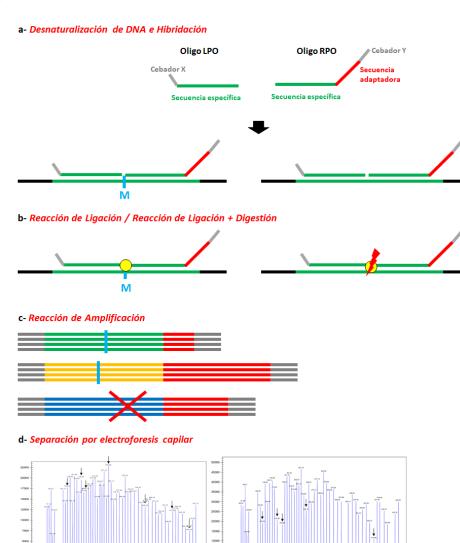
Perfil de metilación del pMGMT

AMPLIFICACIÓN DE SONDAS DEPENDIENTE DE LIGANDOS MÚLTIPLES – METILACIÓN ESPECÍFICA (MS-MLPA)

Genes de vías metabólicas


AMPLIFICACIÓN DE SONDAS DEPENDIENTE DE LIGANDOS MÚLTIPLES (MLPA)

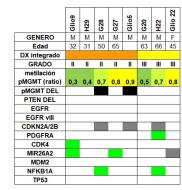
PDGFRA, EGFR, CDKN2A, PTEN, MGMT, CDK4, MDM2, NF &B, TP53


SECUENCIACIÓN DIRECTA

Variantes en TP53 y pTERT

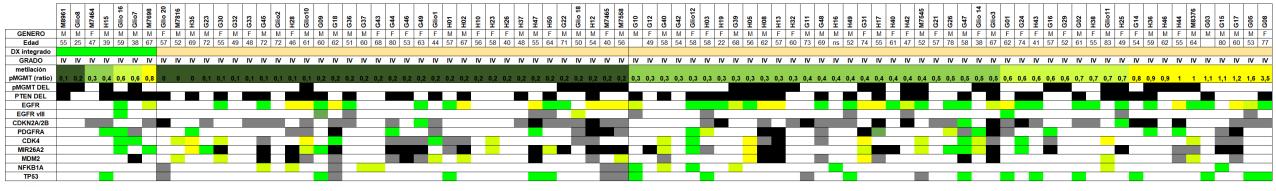
AMPLIFICACIÓN DE SONDAS DEPENDIENTE DE LIGANDOS MÚLTIPLES (MLPA)

AMPLIFICACIÓN DE SONDAS DEPENDIENTE DE LIGANDOS MÚLTIPLES - METILACIÓN ESPECÍFICA (MS-MLPA)



Astrocitoma difuso, IDH mut

Landscape de alteraciones génicas en gliomas



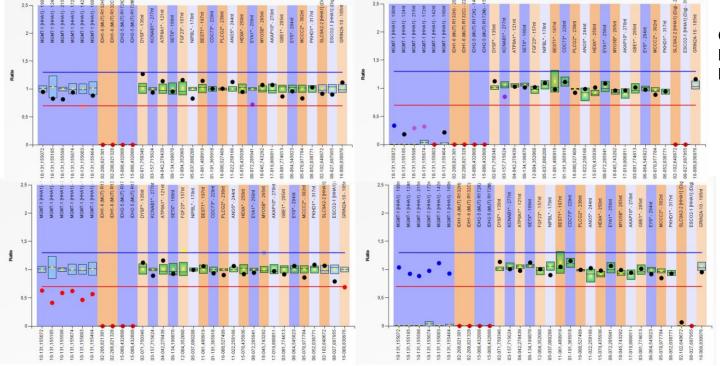
Astrocitoma anaplásico, IDH mut

Oligodendroglioma, IDH mut y codel 1p19q
Oligodendroglioma anaplásico, IDH1 mut y codel1p19q

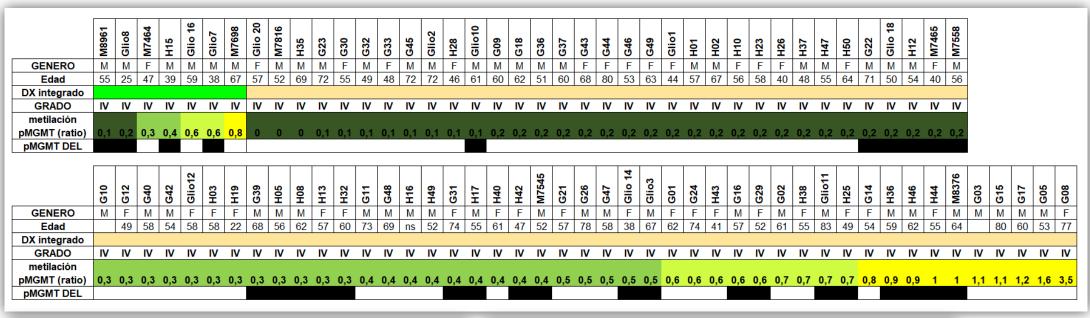
- Los Oligodendrogliomas (GII y GIII) presentan menos alteraciones génicas que los Astrocitomas (GII y GIII) y GBM (IV).
- ✓ Los GBM (GIV) presentan la mayor cantidad de alteraciones génicas.
- ✓ Astrocitomas: los GII presentan menos alteraciones que los de GIII.
- ✓ Astrocitomas anaplásico (GIII): los IDHwt presentan menos alteraciones génicas que los IDHmut.

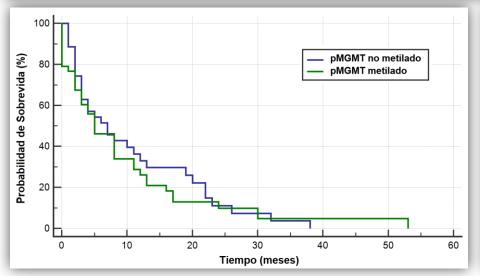
GBM IDH mut GBM IDH wt

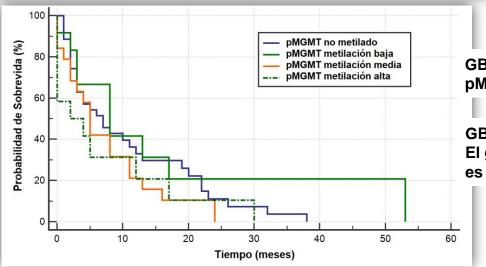
no metilado (<0,25) metilacion media (0,50 - 0,75) metilacion baja (0,25 - 0,50) metilacion alta (>0,75)


✓ GBM (GIV): los IDHmut presentan menos alteraciones génicas que los IDHwt.

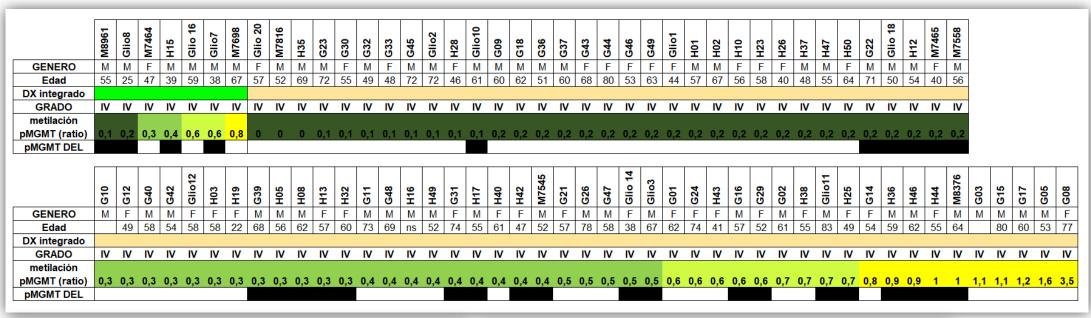
Patrones en el perfil de metilación del pMGMT

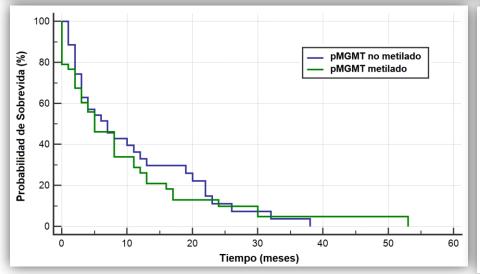


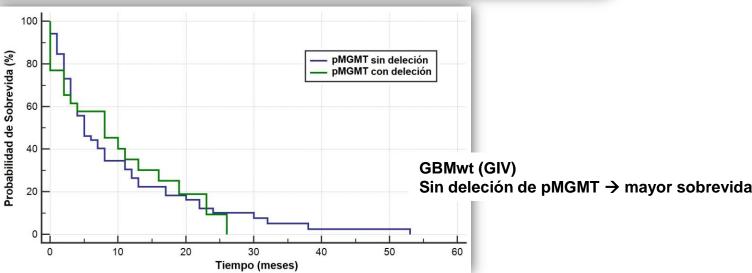

GBMwt (GIV) N° normal de alelos del pMGMT Metilación baja del pMGMT


GBMwt (GIV) Deleción HT (1 alelo) del pMGMT Metilación media del pMGMT

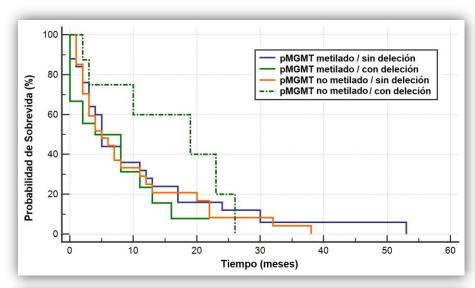
Estado del pMGMT en GBM

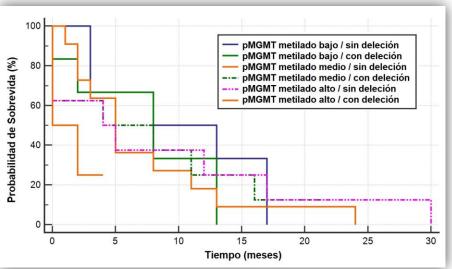



GBMwt (GIV) pMGMT metilado → mayor sobrevida


GBMwt (GIV)
El grado de metilación de pMGMT no
es un buen marcador pronóstico

Estado del pMGMT en GBM





Estado del pMGMT en GBM

GBMwt (GIV)

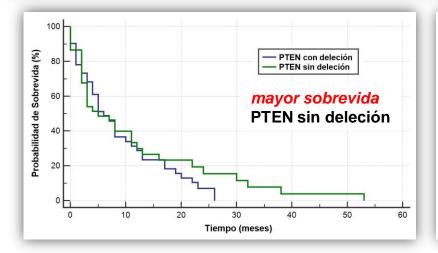
Sobrevida

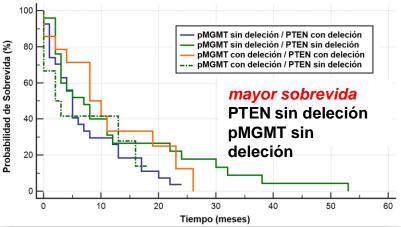
Sobrevida

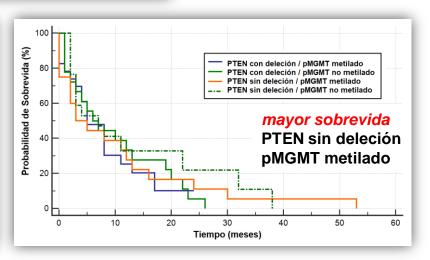
pMGMT metilado y sin deleción de pMGMT pMGMT no metilado y sin deleción de pMGMT

pMGMT no metilado y con deleción de pMGMT pMGMT metilado y con deleción de pMGMT

GBMwt (GIV)

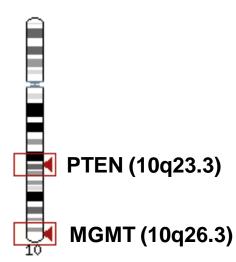

pMGMT metilado alto y sin deleción de pMGMT pMGMT metilado alto y con deleción de pMGMT

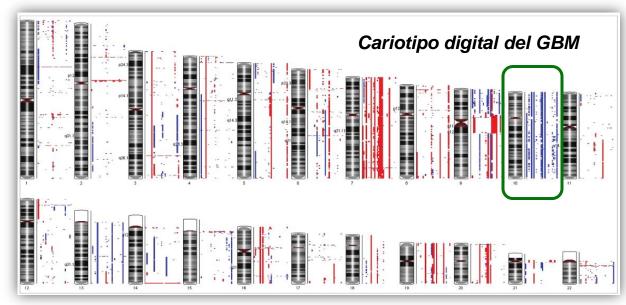

pMGMT metilado bajo/medio y con/sin deleción de pMGMT

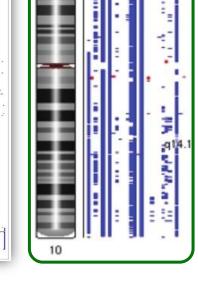


Patrones pérdida de heterocigosidad de PTEN en GBM

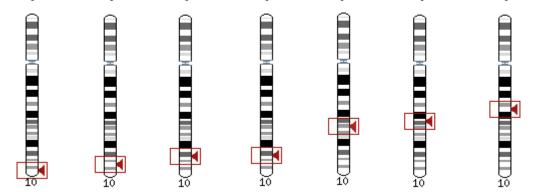
	M8961	Glio8	M7464	H15	Glio 16	Glio7	M7698	Glio 20	M7816	H35	G23	G30	G32	G33	G45	Glio2	H28	Glio10	60 9	G18	G36	G37	G43	G44	G46	G49		E 101	H10	H23	H26	Н37	H47	Н50	G22	Glio 18	H12	M7465	M7558				
GENERO	М	M	F	М	М	М	М	F	М	М	М	F	М	F	М	М	F	М	M	М	М	М	F	F	F	F I	FI	M N	I F	F	F	М	М	F	М	M	М	F	М				
Edad	55	25	47	39	59	38	67	57	52	69	72	55	49	48	72	72	46	61	60	62	51	60	68	80	53 (63 4	14 5	7 6	7 56	58	40	48	55	64	71	50	54	40	56				
DX integrado																																											
GRADO	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV I	IV I	V I	V I	/ IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV				
metilación pMGMT (ratio)	0,1	0,2	0,3	0,4	0,6	0,6	0,8	0	0	0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2 (),2 (),2 0	,2 0	,2 0,	2 0,2	2 0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2				
pMGMT DEL																																											
PTEN DEL																																											
	G10	G12	G40	G42	Glio12	Н03	H19	639	H05	Н08	H13	Н32	G11	G48	H16	H49	G31	H17	H40	H42	M7545	G21	G26		_	_	_	G24 H43	G16	G29	G02	H38	Glio11	H25	G14	H36	H46	H44	M8376	G03	615	G17	G05
GENERO	M	F	М	М	F	F	F	M	M	M	F	F	М	М	М	М	F	M	F	F	М	F	М	М		101	F	F F	171		M	F	M	F	F	M	М	F		_	-	_	М
Edad		49	58	54	58	58	22	68	56	62	57	60	73	69	ns	52	74	55	61	47	52	57	78	58	38 (67 6	32 7	4 4	1 57	52	61	55	83	49	54	59	62	55	64		80 6	60	53
DX integrado			n.,	13.7	n.,		13.7					n.,	n.,	n./	n.,		n.,	13.7	n.,		n.,			n.,		n	., .	., .,	, ,	n.	n/					n.,	n.,	n.,			n/	D./	D./
GRADO	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	V	IV I	V I	V I	/ IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV	IV I	IV	IV
metilación pMGMT (ratio) pMGMT DEL	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,5	0,5	0,5 (),5 (),5 0	,6 0	,6 0,	6 0,0	0,6	0,7	0,7	0,7	0,7	0,8	0,9	0,9	1	1	1,1	1,1 1	1,2	1,6
																																								_			_

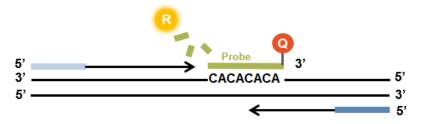






Cromosoma 10

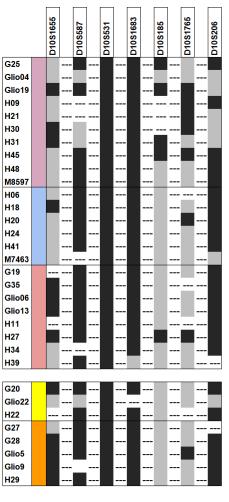


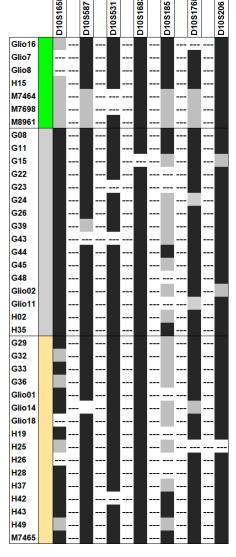


Análisis de microsatélites

D10S1655 D10S587 D10S531 D10S1683 D10S185 D10S1765 D10S206 10q26.3 10q26.1 10q25.1 10q25.3 10q23.33 10q23.31 10q22.1

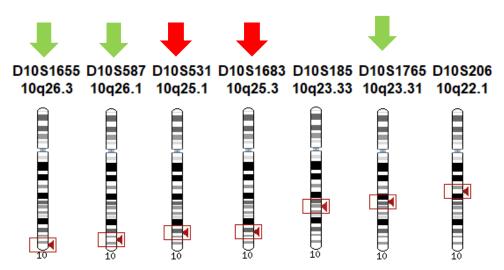
Análisis cuantitativo de microsatélites en tiempo real (QuMA)


STR referencia: Cr 2, Cr 3 y Cr 5 N° copias relativas x método de ddCt



Pérdida de heterocigosidad de 10q

63 CASOS


24 Astrocitomas8 Oligodendrogliomas39 Glioblastomas

Se observó LOH en:

- ✓ D10S1655 (10q26.3) en GBM IDHwt (26/36) a diferencia de AS (8/24) y GBM IDHmut (0/7)
- ✓ D10S587 (10q26.1) en GBM (29/35) a diferencia de AS (7/24)
- ✓ D10S1765 (10q23.31) en GBM (31/39) a diferencia de AS (7/24) y OO (1/8).

Conclusiones

- 1. La cohorte estudiada presentó correlación con la incidencia de los subtipos tumorales en la población y, además, con la caracterización del grado histológico y la presencia de IDHmut en relación a la sobrevida.
- 2. El enfoque integrado en el diagnóstico de gliomas revalidó la relación descripta entre los distintos subtipos tumorales y el patrón de alteraciones genómicas.
- 3. La gradación del perfil de metilación de pMGMT no fue factor pronóstico de sobrevida en GBMwt. Por lo tanto, solo es de importancia evaluar presencia o ausencia de metilación.
- 4. El estado de heterocigosidad del pMGMT fue un factor pronóstico independiente de mayor sobrevida en GBMwt.
- 5. Se observó mayor sobrevida en GBMwt con pMGMT metilado y sin deleción. El impacto del estado de heterocigosidad es mayor que el estado de metilación de pMGMT.
- 6. El estado de heterocigosidad de PTEN fue un factor pronóstico independiente de mayor sobrevida en GBMwt.
- 7. Se observó mayor sobrevida en GBMwt con pMGMT y PTEN sin deleción. El impacto del estado de heterocigosidad de PTEN es mayor que el estado de metilación de pMGMT.
- 8. La identificación del perfil de LOH en distintos locus del 10q permitió definir subtipos molecularmente homogéneos.

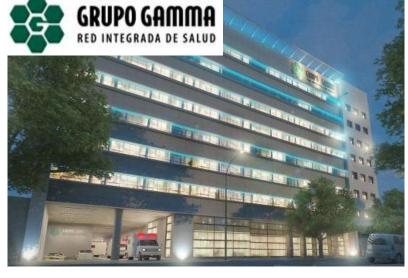
Esta información podría ser relevante de los aspectos clínicos y biológicos de estas neoplasias.

GMED 6

ASOCIACIÓN DE LA PÉRDIDA DE HETEROCIGOSIDAD DEL 10Q CON EL ESTADO DE METILACIÓN DEL *PMGMT* EN GLIOMAS DE ADULTOS

Ruiz M.F.¹², G.R. Perez^{3,4}, M.V. Gennaro^{1,5}, L. Bastone³, A.R. Godoy¹, M. Torruella³. ¹Centro de Diagnóstico Patológico SRL (Grupo Gamma), Argentina; ²Facultad de Ciencias Médicas (UNR), Argentina; ³Gammalab (Grupo Gamma), Argentina; ⁴Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Argentina; ⁵Servicio de Anatomía Patológica (HECA), Argentina.

Apoyo al desarrollo de soluciones tecnológicas en empresas


Gracias por su atención!!!!!

Agradecimientos

Servicio de Anatomía Patológica Dra María Verónica Gennaro

Servicio de Anatomía Patológica

Dra María Fernanda Ruiz Dra María Verónica Gennaro Dra Alicia R. Godoy

Gammalab

Dra Laura Bastone Dra Mónica Torruella

Unidad Asistencial de Neuro-oncología Dr Ignacio Barrenechea Dr Héctor Rojas

