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A B S T R A C T

One of the greatest challenges facing humanity is the development of sustainable strategies 

to ensure food availability in response to population growth and climate change. One 

approach that can contribute to increase food security is to close yield gaps and enhancing 

genetic gain; to such end, what is known as “molecular breeding” plays a fundamental role. 

Since a crop breeding program is mainly based on the quality of the germplasm, its detailed 

genetic characterization is mandatory to ensure the efficient use of genetic resources 
and accelerating development of superior varieties. Deep genotyping is an essential tool 

for a comprehensive characterization of the germplasm of interest and, fortunately, the 

technology is now accessible at a reasonable cost. What must be ensured is the correct 

interpretation of the genotypic information and on that basis develop efficient practical 
molecular crop breeding strategies that respond to the real needs of the breeding program.
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R E S U M E N

Uno de los mayores desafíos que enfrenta la humanidad es el desarrollo de estrategias 

sostenibles para asegurar la disponibilidad de alimentos en respuesta al crecimiento de la 

población y el cambio climático. Un enfoque que puede contribuir a aumentar la seguridad 

alimentaria es cerrar las brechas de rendimiento y mejorar la ganancia genética; para tal fin, 
lo que se conoce como “mejoramiento molecular” juega un papel fundamental. Dado que un 

programa de mejoramiento de cultivos se basa principalmente en la calidad del germoplasma, 

su caracterización genética detallada es fundamental para garantizar el uso eficiente de los 
recursos genéticos y acelerar el desarrollo de variedades superiores. La genotipificación 
profunda es una herramienta esencial para una caracterización integral del germoplasma 

de interés y, afortunadamente, en la actualidad se puede acceder a la tecnología a un costo 

razonable. Lo que debe asegurarse es la interpretación correcta de la información genotípica 

y sobre esa base desarrollar estrategias eficientes y prácticas de mejoramiento molecular de 
cultivos que respondan a las necesidades reales del programa de mejoramiento.
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I N T R O D U C T I O N

Crop breeding is a long-term process that usually takes 

around ten years to develop and release a new variety. 

Crop breeding is a large-scale logistical operation 

involving thousands to hundreds of thousands of 

plants in the initial line fixation stage, but numbers are 
greatly reduced to a small number of selected advanced 

breeding lines by the end of the process: approximately 
99% of the original starting material in a breeding 

program is rejected and discarded (Lenaerts et al., 

2019). The Food and Agriculture Organization of the 

United Nations defined modern plant breeding as “the 
act of using genetic diversity to improve the agronomic 

performance of plants conducted as a formal endeavor 

and according to scientific principles” (FAO, 1997). 
Cooper et al. (2014) defined modern plant breeding 
as an integration of quantitative genetics, statistics, 

gene-to-phenotype knowledge, and development 

models, applied to understand the functional diversity 

of germplasm (Smith et al., 2015).

Crop improvement in a context of continuous 
population growth and with climatic changes affecting 
agronomic production has become a major global 

concern (Hickey et al., 2019). Faced with these threats, 

current crop improvement strategies are unlikely to 

achieve genetic gains that satisfy the demand for food 

both in terms of quantity and quality. In addition, 

radical changes derived from climate change are causing 

heat stress and drought, which leads to significant yield 
losses, so plant breeding strategies need to be adapted to 

increase their efficiency.
The application of molecular genetics in crop 

improvement has spread significantly since the 
appropriate use of the so-known “molecular breeding” 

(i.e., genotype-based approaches) has demonstrated 

to contribute to increase genetic gain with a highly 

favorable cost-benefit ratio (Ismail and Horie, 2017; 
Xu et al., 2017; Bailey-Serres et al., 2019). The correct 

choice of genotyping technology allows a fine genetic 
characterization of germplasm, assisted selection, 

as well as the implementation of genomic selection 

strategies.

Lack of in-depth analysis when implementing 

a molecular breeding strategy can lead to failure, 

generating many undesirable results and discouraging 

breeders from using the technology. Consequently, 

before implementing a molecular breeding strategy, a 

serious analysis of its advantages and disadvantages is 

strongly recommended, taking into consideration the 

DNA technology of choice, the genetic diversity of the 

germplasm, the architecture of the traits of agronomic 

interest to be improved, and the resources demanded 

(Zambelli, 2019; Bohar et al., 2020).

G E N E T I C  C H A R A C T E R I Z A T I O N  O F 
G E R M P L A S M

The configuration of an efficient molecular breeding 
strategy must begin with a comprehensive genetic 

characterization of the germplasm of interest through 

deep genotyping. Once characterization is complete, 

the next challenge is to identify useful applications of 
genotype-based technology to increase genetic gain.

Genetic characterization is relevant for germplasm 

management and agronomic use of both agricultural 

crops and their respective wild relative species. The use 

of genomic tools is today technical and practically more 

accessible than before, mainly due to the development 

of next-generation sequencing (NGS) technologies and 
the reduction of their application costs (Wu et al., 2014; 

Dempewolf et al., 2017; Milner et al., 2019; Sansaloni et 

al., 2020; Fu et al., 2021).

The topics to be listed when addressing the genetic 

characterization of germplasm include SNP deep 

genotyping, genetic diversity, genetic relationships, 

linkage disequilibrium, association mapping, and 

population structure.

SNP deep genotyping

Different types of molecular marker systems have been 
used for genotyping applied in plant breeding: restriction 

fragment length polymorphisms (RFLPs), random-

amplified polymorphic DNAs (RAPDs), amplified 
fragment length polymorphisms (AFLPs), Diversity 

Arrays Technology (DArT) and simple sequence repeats 

(SSRs). However, currently the most advanced and 

commonly used marker systems are single nucleotide 

polymorphisms (SNPs). Their abundance in genomes 

and the achievability to adapt them to automated 

platforms have expanded access to deep genotyping at 
reasonable costs, making SNPs the most widely adopted 

marker system for different genomic applications 
(Mondini et al., 2009). With the increasing throughput 

of NGS technologies, de novo and reference-based SNP 

discovery are today feasible for most crop species.

When applying NGS two variables need to be attended: 

coverage and sequencing depth. Coverage indicates the 

average number of reads that cover a specific target 
genomic region, describing a relationship between the 

number of reads and a reference region, and can be 

expressed in terms of average coverage (for example, 
10X means that on average the target regions are covered 

by 10 reads). Instead, sequencing depth describes the 

absolute number of total usable reads produced by 

sequencing, usually expressed in number of reads (in 
millions). Depending on the experimental objective of 
interest, coverage can vary from the entire genome, one 
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locus, or random nucleotide positions.

There are several genotyping methods available 

which are generally offered by commercial parties 
for which only tissue samples need to be sent for DNA 

extraction. Widely adopted genotyping options fall into 
three categories: whole genome resequencing (WGR), 

reduced representation sequencing (RRS), and SNP 

arrays (Scheben et al., 2017). WGR and RRS methods are 
based on NGS technologies and bioinformatics pipelines 

that align reads to a reference genome and call both 

SNPs and genotypes (Scheben et al., 2017; Pavan et al., 

2020). WGR differs from RRS in the absence of a stage of 
reduction of genome complexity. RRS usually employs 
restriction enzymes (RE) to digest genomic DNA prior to 

sequencing (method identified as RE-RRS) giving rise to 
genotyping-by-sequencing technology or GBS (Elshire 
et al., 2011). 

SNP arrays rely on allele-specific oligonucleotide 
(ASO) probes (including target SNP loci plus their 

flanking regions) fixed on a solid support, which 
are used to interrogate complementary fragments 

from DNA samples and infer genotypes based on the 

interpretation of the hybridization signal. The two 

leader manufacturers (Affymetrix™ and Illumina™) 
had developed 46 SNP arrays for 25 crop species with 

several markers ranging from 3K to 820K, although for 

their routine application in the molecular breeding of 

the most prominent field crops, arrays of 25-50K are 
usually chosen (Rasheed et al., 2017).

The use of WGR, at least for the moment, is not 

considered financially feasible in large genome crops 
such as corn (2.5 Gbp), barley (5 Gbp), and wheat (17 
Gbp). However, the final decision on the convenience of 
making the investment will depend on the commercial 

importance of the crop, the added value of the trait 

of interest and the expected net return. For most of 
molecular breeding applications, deep genotyping by 

using GBS or SNP arrays is recommended as they allow 
a satisfactory balance among the number of SNP loci 

genotyped, quality data, and costs. 

In GBS technology, the allele-calling does not require 
a reference genome, offering an unbiased method to 

assess genetic diversity in a large collection of accessions, 

especially in orphan crops because SNP discovery and 

genotyping can be done simultaneously with less bias 

toward genetic backgrounds (Rasheed et al., 2017; Darrier 
et al., 2019). When the germplasm includes commercial 

materials combined with exotic materials, GBS would 
be the most appropriate genotyping. The disadvantage 

of using SNP arrays is the risk that some SNPs may not 

be informative for all individuals. Since the ASO probes 

immobilized in the array are fixed and predefined 
(identified from a restricted set of genotypes, mostly 
public) the proportion of useful SNP for capturing the 

genetic diversity of the germplasm of interest cannot 

be predicted. Therefore, one of the limitations to work 

with SNP arrays is the ascertainment bias since they 

cannot identify marker-trait associations for SNPs 

that were not present in the population used for array 

development (Frascaroli et al., 2013; Lachance and 

Tishkoff, 2013; Rasheed et al., 2017; Negro et al., 2019). 

Contrarily, GBS ensure that all SNPs discovered will be 
informative for all the sequenced genotypes of interest, 

producing high-quality polymorphism data. Although 

actual relative costs vary with the number of samples 

and the SNP density required, is widely considered that 

pricing of genotyping by GBS is lower than SNP arrays 
(Li et al., 2015; Pavan et al., 2020). An extra complexity 
of GBS respect to arrays is the necessity of library 
preparation and bioinformatics analysis (Elshire et 

al., 2011; Li et al., 2015; Sansaloni et al., 2020; Fu et al., 

2021). The good news is that there are many companies 

that provide the service at reasonable prices. In Table 1, 

the main features of both genotyping technologies are 

summarized.

Once genotype information is collected (independently 

of the technology used), an adequate filtering criterion 
considering different indicators should be followed to 
define the high-quality genotyping dataset to avoid 
inaccuracies and bias in downstream analyses. The 

presence of SNP loci with  a high rate of missing data 

is considered a feature of inaccurate genotype calls, so 

those SNPs should be excluded from the analysis. SNP 
loci characterized by excessive heterozygosity should 

Genotyping 

technology

Cost per sample Cost per data 

point

Proportion of 

informative SNPs

Informative for 

exotic materials

Ascertainment 

bias 

SNP array Moderate - High Low - Moderate Moderate - High Variable Yes

GBS Moderate Low High Yes No

Tabla 1. Comparison of the main features of genotyping by SNP* array and GBS** technologies

*SNP= single nucleotide polymorphic; **GBS=(completar)
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also be excluded, as they are indicative of technical 
artifacts or paralogous/repetitive regions that could not 

be distinguished through the genotyping procedure. SNP 

loci displaying very low frequency alleles may derive 

into genotyping errors and provide poor statistical 

power to reveal association with phenotypic traits or 

establishing relative kinship. Thus, the recommended 

conditions that SNPs should meet are: (i) up to 10% of 

missing genotype calls; (ii) up to 10% of heterozygous 

calls (assuming inbred lines are being genotyped); (iii) 

the number of heterozygous calls does not exceed the 
number homozygous minor allele counts; and (iv) minor 

allele frequency (MAF) > 0.05 (Wu et al., 2014; Darrier et 

al., 2019; Milner et al., 2019; Pavan et al., 2020).

Genetic diversity and genetic relationships

Productivity of most of field crops remains far below 
the potential due to several factors such as access to 

high quality seeds, irrigation, and fertilizers, abiotic 

stresses, high incidence of pests and diseases, and 

weeds. However, genetic improvement provides an 

approach to address some of these constraints, but 

largely depends on the availability of genetic diversity, 

systematic classification, and efficient use of the 
available germplasm.

A high-impact activity that contributes to improving 

germplasm management and utilization is the analysis 

of patterns of genetic diversity and population structure, 

which is important for broadening the genetic basis and 

therefore, to establish successful commercial breeding. 

Breeders demand a detailed genetics information 
of germplasm in order to (i) define core subsets of 
germplasm for specific traits, (ii) select parental 
combinations for developing progenies with maximum 
genetic variability for further selection, (iii) identify 

genetic duplicates for better germplasm management, 

(iv) enhance the search for unique germplasm with traits 

of breeding targets for better varietal development, (v) 

describe heterotic groups (Mohammadi and Presanna 
2003; Reif et al., 2003; Flint-Garcia et al., 2009; Ertiro et 

al., 2017; Ellis et al., 2018; Jeong et al., 2019; Singh et al., 

2019; Sansaloni et al., 2020).

The assessment of genetic diversity within and 

between plant populations can be performed by using 

morphological features, biochemical characterization 

of allozymes, and DNA markers. DNA markers offer 
several advantages over phenotype-based alternatives 

as they are stable and detectable in all tissues regardless 

of growth, differentiation, or development stage and 
additionally, are not confounded by environmental, 

pleiotropic, and epistatic effects. The availability of 
low cost and high throughput SNP platforms facilitate 

genetic characterization of germplasm contributing to 

study the amount and distribution of genetic variation 

they contain, arising as a potent tool both for hybrid 

breeding and inbred breeding. Use of genotype data 

to study genetic diversity can be mainly performed 

by calculation of population genetics parameters 

and analysis of genetic relationships among samples 

(Govindaraj et al., 2015).

The measuring of genetic diversity is based on 

comparisons of individual genotypes within and between 

populations. The analysis starts with the construction of 

a genotype matrix, sample × sample pairwise and the 
calculation of the genetic distance (or similarities) that 

can be done by different statistical methods, such as: (i) 
Nei and Li’s coefficient, (ii) Jaccard’s coefficient, (iii) 
simple matching coefficient, and (iv) modified Rogers’ 
distance (Mohammadi and Presanna, 2003).

The two main ways of analyzing the resulting matrix 
are principal coordinate analysis (PCoA) and dendrogram 

(or clustering tree diagram). PCoA is used to produce 

a 2- or 3-dimensional scatter plot of the samples such 

that the distances among the samples reflect the genetic 
distances among them with a minimum of distortion. 

The second approach is to produce a dendrogram where 

samples are grouped in clusters according to their 

genetic similarity. Different algorithms were used for 
clustering, including Unweighted Pair Group Method 
with Arithmetic Averages (UPGMA), neighbor-joining, 
and Ward’s method (Govindaraj et al., 2015).

Cluster analysis is of great help for breeders in defining 
which genotypes should be crossed to develop breeding 

populations that increase the chances of obtaining 

novel allelic combinations and to reverse or mitigate 

the genetic erosion. Besides, the analysis of genetic 
relationship is particularly useful when identifying the 

best materials to quickly integrate them into an eroded 

germplasm pool through exchange, purchase, or in-
licensing germplasm (Beckett et al., 2017; Leitão et al., 

2017; Vendelbo et al., 2020). Different genetic materials, 
such as elite lines, ecotypes, landraces, subspecies, or 

wild relatives, are potential useful sources of genetic 

variation. Lack of genetic variation for traits of interest 

within the domesticated genetic pool, imposed a greater 

exploration of crop wild relatives (CWR). Thus, breeders 
in barley, maize, wheat, rice, sorghum, and soybean 

(among other species) reported a lack of variation for 

traits of interest within the domesticated germplasm, 

being exploration of CWR a feasible approach to 
mitigate the genetic erosion (Pourkheirandish et al., 

2020). Dempewolf et al. (2017) reviewed how CWR 
contributed to the development of improved crop 

varieties by crossing them with wild species carrying 

beneficial allelic variation for traits. Private industry 
has valued the diversity of CWRs and landraces, which 

sometimes is preferred as an alternative to the use of 

transgenic technology associated with high regulatory 

costs and often resisted by consumers (Dempewolf et al., 

2017). The proper use of GBS constitutes a powerful tool 
to reveal and measure the genetic variation contributed 
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by wild species, a previous step required for its potential 

use in crop improvement (Xu et al., 2017).
Existence of heterotic parental gene pools constitutes 

the cornerstone in hybrid breeding programs as the 

prerequisite for achieving a high heterosis effect in 
hybrid crosses. Hybrid crop breeders evaluate the 

germplasm to assign inbred lines into distinct heterotic 

groups by studying combining ability, mainly based 

on grain yield. However, the use of molecular markers 

for genetic characterization of inbred lines can 

complement and fine-tune the combining ability data. 
Genetic distance estimates contribute to the assigning 

of genotypes to heterotic groups and the exploitation 
of complementary lines which maximize the outcome 
of hybrid breeding programs (Wu et al., 2014; Xu et al., 

2014; Zhao et al., 2015; Beckett et al., 2017; Labroo et al., 

2021; Silva et al., 2021).

Thus, plant breeding community has recognized that 

exploitation of genetic variability by conventional plant 
breeding in combination with genomics approaches 

have contributed to developing high yielding varieties 

or hybrids reducing the breeding cycle (Varshney et al., 

2005, 2021).

Linkage disequilibrium

Selection during crop breeding has caused a dramatic 

loss of genetic diversity in many genome regions of 

modern varieties. For instance, in major cereals and 

sunflower, reductions in diversity of 30-40% and 40-
50%, respectively were estimated (Buckler et al., 2001; 

Whitt et al., 2002; Liu and Burke, 2006). Thus, it can 
be assumed that CWR for most crop species may have 

retained genetic information before domestication and 

artificial selection. Linkage disequilibrium (LD) refers to 
the non-random association of alleles at different loci 
(SNPs). LD is a common variable in population genetics 

and evolutionary biology, used among others, to map 

quantitative trait loci, estimate effective population size 
and past founder events, or to detect genomic regions 

under selection (Lucek and Willi, 2021).

Both D′ and r2 statistics have been widely used to 

quantify LD, differing in how they are affected by 
marginal allele frequencies and small sample sizes. To 

identify SNPs significantly associated with phenotypic 
trait variation, r2 is the most relevant LD measurement. 

In small populations, the effects of genetic drift result 
in the consistent loss of rare allelic combinations, which 

increase LD levels. When genetic drift and recombination 

are at equilibrium, r2=1/(1+4N
e
c), where N

e
 is the effective 

population size and c is the recombination fraction 

between sites (Flint-Garcia et al., 2003). N
e
 is one of the 

most important indicators in population genetics for 

describing the magnitude of genetic drift, inbreeding, 

and assessing genetic diversity. The smaller the effective 
population size, the faster the population will become 

inbred and thus no longer respond to selection (Cobb 

et al., 2019). N
e
 is an important parameter that helps to 

quantify the magnitude of genetic drift and inbreeding. 

Thus, it is highly recommended that breeders actively 

calculate and monitor N
e
 through successive breeding 

cycles to ensure the long-term viability of their 

breeding programs. Knowledge of N
e
 helps both, to 

design efficient selection and, if necessary, to modify 
parental combinations that maintain or increase genetic 

variation to ensure the identification of future superior 
candidates. In larger populations more recombination 

events occur for which it is expected to have lower levels 
of LD. N

e
 can be estimated by using both pedigree and 

marker data, however the latter is presently preferred 

(Wang, 2016). In practice, N
e
 is directly related to the 

effective number of loci (M
e
), which can be defined as the 

number of independent loci that gives the same variance 

of realized relationship as obtained in the more realistic 

situation calculated by M
e
=(2N

e
L)/log(4N

e
L), where 

L is the genome size in Morgan. A larger M
e
 (due to a 

larger N
e
, L, or both) will require a proportionally larger 

number of markers to capture the relatedness structure 

of the population (Goddard, 2009; Wang, 2016).

If a true functional polymorphism contributes a 

fraction of the total trait variation, h2
q
, and has a LD 

value of r2 with another SNP, then the trait variation that 

can be explained by this SNP will be r2 × h2
q
. A similar 

inference cannot be made using D′ (Zhu et al., 2008). 

Typically, r2 values of 0.1 or 0.2 are used to describe the LD 

decay. For instance, in soybean, a mild decline in LD over 

distances as great as 50 kbp was described (Zhu et al., 

2003), whereas in rice it was found that LD approaches 

r2 = 0.10 for distances from around 100 kbp (Garris et al., 

2003). In contrast, in maize and cultivated sunflower r2 

declines to <0.10 within around 1 kb (Remington et al., 

2001; Liu and Burke, 2006).
Measuring of the pattern and extent of LD are 

influenced by different factors such as mating type, 
genetic drift, gene flow, selection, mutation, population 
substructure and relatedness, and ascertainment bias 

(Flint-Garcia et al., 2003). For instance, domestication 

can induce population bottlenecks producing higher 

levels of LD (slow decay). Similarly, the increase in 

homozygosity associated with self-fertilization reduces 

the effective recombination rate, resulting in elevated 
LD (rapid decay) across the genome (Nordborg, 2000) 

or localized around the targeted loci (Clark et al., 2004). 

Conversely, gene flow and recombination are predicted 
to reduce LD (Slatkin et al., 2008).

Association mapping and population structure

Investigating the magnitude of LD decay determines 

the resolution of association mapping (AM) and 
marker-assisted breeding for which studying the LD 
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pattern contribute to estimate the required numbers of 

SNPs. AM (also known as LD mapping) is a method of 
mapping quantitative trait loci (QTLs) using historical 

meiotic recombination events performed over several 

generations to associate phenotypes with genotypes 

in large germplasm populations. AM provides relevant 
information into the genetic basis of complex traits and 
is a valued approach to identify the genes underlying 

agronomically important traits. AM is based on the 
LD between molecular markers (SNPs) and functional 

loci, requiring detailed understanding of the pattern of 

LD. AM of a trait-associated allele is based on the slow 
decay of LD with closely linked markers (Slatkin et al., 

2008; Zhu et al., 2008). For instance, resequencing of 

cultivated and wild soybeans showed that LD decayed 

relatively slowly; given the high LD, only a small 

subset of SNPs would be required for marker-assisted 

breeding. However, the high LD introduces limitations 

for association studies using genetic populations (Lam 

et al., 2010).

Germplasm with a recombination history producing 

a limited gene flow can result in a structured breeding 
population with an uneven distribution of alleles across 

subgroups. Therefore, the use of AM in such stratified 
populations may lead to non-functional and spurious 

associations. However, statistical analysis that estimate 

the effects of population structure–induced linkage 
disequilibria allowed to expand the proper use of AM 
(Pritchard et al., 2000).

The domestication of crops has generated new 

population structures, some of which were geographic. 

Crops moved from their center of origin to a wide range 

of environments, where natural selection drove genetic 

adaptation to the new ones. Equally important are the 

genetic structures associated with end-use or cultural 

preferences that lead to the increase of the frequency 

of favorable alleles. Although they might become 

fixed within populations, would still be polymorphic 
in worldwide collections of cultivars or landraces and 

should be characterized as QTL in mapping studies of 

diverse material (Hamblin et al., 2011).

P R A C T I C A L  A P P L I C A T I O N S  O F  D E E P 
G E N O T Y P I N G

As discussed, the application of deep genotyping 

data in the genetic characterization of a germplasm 

base is important to assess genetic diversity, genetic 

relatedness, and population structure, contributing to 

a better understanding of the materials included in a 

breeding program. One molecular breeding application 

requiring high-density markers is genomic selection 

(GS). Although it is not currently used routinely, its 

importance and consideration are clearly growing. The 

great advantage of GS use is the ability to accurately 

select individuals of higher breeding value without 

the requirement of collecting phenotypes pertaining 

to these individuals. This can facilitate a shortening 

of the breeding cycle and enable rapid selection and 

intercrossing of early-generation breeding material.

GS consists of the prediction of the genomic estimated 

breeding value (GEBV) of individuals based on genomic 
data (Meuwissen et al., 2001). Typically, is performed 

among the progeny of a biparental cross between two 

elite inbreds (breeding population) where phenotypes 

and genome-wide genotypes are investigated in the 

training population (a subset of the breeding population) 

to predict significant relationships between phenotypes 
and genotypes using statistical approaches. Marker 
effects estimated on the training population will be 
used to predict the performance of the best candidates 

in the rest of the breeding population solely based on 

GEBV (Daetwyler et al., 2013; Heslot et al., 2015). One 

question that arises is: how many SNP loci should be 

genotyped to achieve a reasonable prediction accuracy 

(e.g., 0.6 correlation between true breeding value and 

GEBV)? There is no single answer, however there are 
some aspects to consider that can bring us closer to 

it. Simulation studies showed that the relationships 

between the individuals in the training population and 

the individuals in the prediction population had a major 

impact on the accuracy of the GEBV. Accurate predictions 
could be obtained with a small number of markers (e.g., 

300–500) and a small number of phenotypes (e.g., 200–
1000) when the phenotypes were collected from closely 

related biparental populations. To generate accurate 

predictions from nominally unrelated individuals many 

more phenotypes (e.g., 20,000) and many more markers 

(e.g., 10,000) were required (Hickey et al., 2014). GS 

provides tremendous opportunities to increase genetic 

gain in plant breeding. Early empirical and simulation 

results are promising, but for GS to work, consideration 

of the cost-benefit balance is needed. 
Although deep genotyping allows for the identification 

of thousands of informative SNPs, most routine 

molecular breeding applications do not require such a 

large number of markers. Therefore, the selection of a 

subset of SNP markers suitable for the chosen breeding 

strategy and their conversion to a more cost-effective 
genotyping technology is recommended. Kompetitive 

Allele Specific PCR (KASP) is a user-friendly SNP platform 
that is cost efficient for smaller numbers of markers 
(<200) which is what is needed for marker-assisted 

recurrent selection, marker-assisted backcrossing, and 

quality control analysis. KASP is one of the uniplex SNP 
genotyping platforms that has evolved to be a global 

benchmark technology for conversion of selected SNP 

(Semagn et al., 2014).

Practical applications that require around 200 markers 

include quality control analysis (genetic identity, genetic 

purity, and parentage verification), linkage mapping of 
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QTL, marker-assisted recurrent selection, and marker-

assisted backcrossing.

Quality control

Control of the genetic purity (in terms of identity of 

the parental inbred lines and progeny testing of the 

resulting F1 hybrids) is an essential quality control (QC) 

parameter in hybrid breeding, as maintaining high levels 

of genetic purity is critical to guarantee a robust and 

stable agronomic performance of the genotype. Genetic 

purity evaluation is also relevant to meeting the strict 

intellectual property requirements that govern plant 

breeding and variety registration in many countries 

(Chen et al., 2016; Josia et al., 2021). Genetic purity can 

be proved using different approaches such as grow out 
test, use of biochemical markers and use of molecular 

markers. The grow out test is based on the use of a 

set of morphological descriptors and the biochemical 

marker approach analyzes electrophoretic protein 

(isoenzymes) profiles. Molecular marker approaches 
detect the variation of genotypes directly at the DNA 

level and have several advantages including high 

polymorphism, high-throughput detection methods, 

and they are unaffected by environmental conditions 
or the physiological stage of the plant (Chen et al., 

2016; Josia et al., 2021). The main purpose of routine QC 

genotyping is to identify contamination or mislabeling 

of germplasm during regeneration, seed increase or 

seed distribution. To achieve a cost-effective QC test, 
a balance between accuracy of detection and efficiency 
needs to be maintained, for which optimization of the 

balance between accuracy and cost is the main concern 

when choosing a set of markers for QC.

In maize, was proposed the use of two separate sets 

of markers, each focusing on different types of QC. The 
first was a broad QC focusing on identity of a sample 
employing a minimum of 80 KASP markers (which 

were selected based on MAF, coverage and chromosome 
distribution) to distinguish each of the entries from one 

another. It is important to conduct this type of QC before 

starting new breeding crosses to ensure the identity 

and purity of the founding parents and to evaluate 

the levels of residual heterogeneity within them. The 

second approach was rapid QC for seed production using 

a smaller sub-set of only ten selected KASP markers 

(Chen et al., 2016).

QTL mapping and marker-assisted recurrent selection

The nature of a trait may sometimes suggest that much 

of the quantitative variation is controlled by a few genes 

with large effects. In this situation, the objective of QTL 
mapping is finding a few major QTL. The subsequent 
breeding strategy is to introduce or pyramid these QTL, 

via standard breeding procedures, into elite germplasm 

to develop improved cultivars. Exploiting a few major 
QTL therefore requires both gene discovery (i.e., QTL 

mapping) and selection (Bernardo, 2008).
QTL mapping involves identification of a subset 

of markers that are significantly associated with one 
or more QTL influencing the expression of the trait of 
interest. The main steps in linkage-based QTL mapping 

include (1) selecting and/or developing appropriate bi-

parental mapping populations; (2) phenotyping the 

population for the trait of interest under greenhouse 

and/or field conditions; (3) choosing the molecular 
marker system, genotyping the parents of the mapping 

population and F
1 with larger numbers of markers, and 

selecting markers exhibiting polymorphism between 
the parents; (4) choosing a genotyping approach (entire 

population, selective genotyping, or bulk segregant 

analysis) and generating molecular data for an adequate 

number of uniformly-spaced polymorphic markers; and 

(5) identifying the molecular markers associated with 

the QTL using statistical programs (Semagn et al., 2010, 

2014). There is no clear consensus regarding the number 

of markers demanded for genotyping bi-parental 

populations but depending on the species and its 

genetic map, most researchers use around 200 and 400 

markers. Once a significant QTL is identified, a second 
round of genotyping can be performed by saturating the 

chromosome region with additional polymorphic SNPs 

around the QTL of interest (fine mapping). Chromosome 
position of the QTL will be established relative to closely 

spaced flanking SNPs, and these markers can potentially 
be used for marker assisted selection (MAS) of the QTL 
associated to the trait.

The nature of a trait may sometimes suggest that 

much of the quantitative variation is controlled by many 

genes with small effects. Two related approaches have 
been proposed and used to increase the frequency of 

favorable QTL alleles at multiple loci: (i) F
2 enrichment 

followed by inbreeding and (ii) marker-assisted 

recurrent selection (MARS) (Bernardo, 2008). MARS 
refers to the improvement of an F2 population by one 

generation of phenotypic selection in the target set of 

environments followed by 2–3 generations of selection 
based on significant marker genotypes. MARS has been 
applied for improving a breeding population with respect 

to QTLs exerting smaller effects on the phenotype 
(Gokidi et al., 2016).

In both approaches the base generation is usually 

an F2 population from the cross between two inbreds, 

although backcrosses, three-way crosses, or double 

crosses may also be used. The objective is to develop a 

recombinant inbred with superior per se performance 

for self-pollinated crops or with superior testcross 

performance for hybrid crops. Whereas F2 enrichment 

usually involves only one generation of marker-based 

selection, MARS involves several cycles of marker-based 
selection (Bernardo, 2008).
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Marker-assisted backcrossing

Marker-assisted backcrossing (MABC) is used for 
transferring genes which are responsible for favorable 

agronomic traits from a donor line into the genome of 

a recipient (recurrent) line. Introgression of a QTL by 

successive backcrosses is used to improve elite lines 

(recurrent parent) by introducing alleles from exotic 
material (donor parent). Besides to maintain the donor 
allele at the QTL in the progenies, the process pursues 

two objectives: reduction of the size of the donor genetic 

background around the target locus, and recovery of the 

recurrent parent genetic background (Hospital, 2005).

In the absence of selection, the proportion of the donor 

genome decreases by half at each generation. Thus, it 

is expected that after five backcross generations (BC
5), 

98.4% of recurrent parent background is recovered. 

However, since selection is for the donor allele at the 

QTL, elimination of the donor genome around that QTL 

will be much slower than in the rest of the genome. As a 

result, the proportion of the donor genome will decrease 

less for the chromosome carrying the target locus than 

for the others. This is the so-called linkage drag problem 

(Naveira and Barbadilla, 1992).
Marker-assisted selection (MAS) in introgression of 

favorable alleles at QTL usually comprises selection for 

presence of the donor allele at two markers delimiting 

the interval in which the putative QTL was detected, and 

the recurrent parent allele at markers outside the QTL 

interval (foreground selection). The use of tightly-linked 

flanking markers for recurrent parental alleles helps to 
decrease linkage drag more rapidly resulting in short 

donor chromosome segments attached to the target 

gene. To optimize the positions of a limited number of 

markers that flank the target locus was concluded that 
the larger the population, the closer the markers should 

be to the target locus (Frisch and Melchinger, 2005).
Marker distance and distribution for genome-wide 

background selection will impact significantly on the 
efficiency of MABC method. Contrary to common belief, 
high marker densities are not required. To efficiently 
identify the backcross individuals with the smallest 

percentage of donor genome, a marker distance of 10 

cM is sufficient. Decreasing the marker distances below 
10 cM had only marginal effect on the recipient genome 
recovery. One explanation for this result is that, in general, 
one crossing over by meiosis and chromatid occurs for 

each chromosome segment 1 M in length. In two- or 
three-generation backcrossing programs, the number 

of recombination events resulting in chromosome 

segments of different parental origin is therefore limited 
(Herzog and Frisch, 2011, 2013). Computer simulations 

were conducted to evaluate and optimize the resource 

requirements of conversion programs of different crop 
genetic models with chromosome numbers (from n=7 to 
n=17) demonstrating how MABC contributes to reduce 

the time and costs demanded for gene introgression. 

The results showed that depending on the genome 

size of the crop of interest, recovering 10% quantile 

with 98% of recurrent background can be reach in BC
3 

working with population sizes comprised between 10 to 

30 individuals per generation and around two to three 

SNP markers per chromosome equally distributed across 

each linkage group (Herzog and Frisch, 2013). A further 

considerable reduction of the costs could be achieved if 

the population size in the first backcross generation is 
twice the population size in generations BC2 and BC3 of 

a three-generation backcrossing program (Herzog and 

Frisch, 2013).

C O N C L U S I O N S

One of the greatest challenges facing humanity is the 

development of sustainable strategies to ensure food 

availability in response to population growth and climate 

change. Different foresight studies have concurrently 
argued that current food production practices would 

not be sufficient and therefore a transformation of 
the food system is required. One approach that can 

contribute to increase food security is to close yield gaps 

and enhancing genetic gain, for which solutions based 

on multiple disciplines should be found. Among these, 

clearly the genetic improvement of crops and specifically 
molecular breeding plays a fundamental role.

There is no doubt that a crop breeding program is 

fundamentally based on the quality of the germplasm. 

However, if a detailed genetic characterization is not 

available, there is a risk of underusing genetic resources 

or delaying the development of superior varieties. 

As stated, deep genotyping is an essential tool for a 

comprehensive characterization of the germplasm 

of interest and, fortunately, the technology is now 

accessible at a reasonable cost. What must be ensured is 

the correct interpretation of the genotypic information 

and on that basis develop efficient crop breeding 
strategies that respond to the real needs of the breeding 

program.
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