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A B S T R A C T

Random Forest approaches have been used in phenotyping at both morphological and metabolic 

levels and in genomics studies, but direct applications in practical situations of plant genetics and 

breeding are scarce. Random Forest was compared with Discriminant Analysis for its ability in 

classifying tomato individuals belonging to different breeding populations, exclusively based on 
phenotypic fruit quality traits. In order to take into account different steps in breeding programs, 
two populations were assayed. One was composed by a set of RILs derived from an interspecific 
tomato cross, and the other was composed by two of these RILs and the corresponding F

1
, F

2
 and 

backcross generations. Being tomato an autogamous species, the first population was considered 
a final step in breeding programs because promising genotypes are being evaluated for putative 
commercial release as new cultivars. Meanwhile, the second one, in which new variation is being 

generated, was considered as an initial step. Both Random Forest and Discriminant Analysis 

were able to classify populations with the aim of evaluating general variability and identifying 

the traits that most contribute to this variability. However, overall errors in classification were 
lower for Random Forest. When comparing the adequacy of classification between populations, 
errors of both statistical analyses were greater in the second population than in the first one, 
though Random Forest was more precise than Discriminant Analysis even in this initial step of 

plant breeding programs. Random Forest allowed breeders to get a reliable classification of tomato 
individuals belonging to different breeding populations.

Key words: discriminant analysis, Machine Learning, parametric and non-parametric classification 
techniques, phenotype identification, traits categorization
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R E S U M E N

Los enfoques de Random Forest se han utilizado en la fenotipificación, tanto a nivel morfológico 
como metabólico, y en estudios de genómica, pero las aplicaciones directas en situaciones 
prácticas de fitomejoramiento y genética son escasas. Random Forest se comparó con el Análisis 
Discriminante por su capacidad en la clasificación de individuos de tomate pertenecientes a 
diferentes poblaciones de mejoramiento, exclusivamente en función de los rasgos fenotípicos de 
calidad de la fruta. Para tener en cuenta los diferentes pasos en los programas de mejoramiento, se 
ensayaron dos poblaciones. Una estaba compuesta por un conjunto de RILs derivadas de un cruce 
interespecífico de tomate, y la otra estaba compuesta por dos de estas RILs y las correspondientes 
generaciones F

1
, F

2
 y retrocruzas. Siendo el tomate una especie autógama, la primera población se 

consideró un paso final en los programas de mejoramiento porque se están evaluando genotipos 
prometedores para su lanzamiento comercial putativo como nuevos cultivares. Mientras tanto, la 
segunda, en la que se está generando nueva variación, se consideró como un paso inicial. Tanto 
Random Forest como Análisis Discriminante pudieron clasificar poblaciones con el objetivo de 
evaluar la variabilidad general e identificar los rasgos que más contribuyen a esta variabilidad. Sin 
embargo, los errores generales en la clasificación fueron menores para Random Forest. Al comparar 
la adecuación de la clasificación entre poblaciones, los errores de ambos análisis estadísticos 
fueron mayores en la segunda población que en la primera, aunque Random Forest fue más preciso 
que el Análisis Discriminante incluso en este paso inicial de los programas de fitomejoramiento. 
Random Forest permitió a los criadores obtener una clasificación fiable de individuos de tomate 
pertenecientes a diferentes poblaciones de cría.

Palabras clave: análisis discriminante, Aprendizaje Automático, técnicas de clasificación 
paramétricas y no paramétricas, identificación de fenotipos, categorización de rasgos.
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I N T R O D U C T I O N

In plant breeding, different populations are voluntarily 

created by crossing selected genotypes to obtain 

hybrids. Then, the genetic structure of these artificial 
populations may be predicted, which allows estimating 

the components of genetic mean values and variances 

underlying the traits to be improved (Kearsey and Pooni, 

1996). Hence, various groups (families, generations) 

of objects (individuals) are available for evaluation, 
enabling the application of supervised classification to 
assess the generated genetic variability (Stephan et al., 

2015).

One of the first challenges that biological sciences 
must deal with is classification (Duda et al., 2000), an 

inherent process in most human activities that consists 

in accurately and efficiently assigning a class or a type to 
a given object under study (Trainor et al., 2017). Objects 
are considered as factors that are evaluated by a series 

of variables or attributes with the goal of constructing 

groups according to their similarities (Hastie et al., 

2008). Two principal approaches are distinguished in 
this common challenge: supervised and unsupervised 

classification. In the first one, a priori known groups 
of objects are assessed aiming to establish objective 
criteria through data analysis for predicting with low 

uncertainty the belonging of new objects to any of those 
groups (Alhusain and Hafez, 2017). In unsupervised 
classification, instead, the belonging of studied objects 
to a given group is unknown and the goal is to find the 
underlying structure of data according to similarities 

found during the assessment (Larose and Larose, 2015).

Tomato (Solanum lycopersicum L.) is one of the most 

important horticultural crops worldwide (FAOSTAT, 
2017). Also, it is a model species for plant genetics and 

breeding by means of both conventional and advanced 

strategies (Gerszberg et al., 2015). Phenotypic evaluation 

is essential at different steps of a breeding program, 
especially when variability for quantitative agronomic 

traits is increased by crosses to wild germplasm 

(Dempewolf et al., 2017).

Discriminant Analysis is a parametric method 

widely used for classifying in biological and agronomic 

applications (Alhusain and Hafez, 2017) while the non-
parametric classification techniques, such as Random 
Forest, becomes necessary in many studies (Singh et al., 

2016).

The objective of this research was to assess the use 
of Random Forest to classify populations with different 
genetic structure according to phenotypic variability for 

fruit quality traits in two different usual situations of 
plant breeding. The accuracy and robustness of Random 
Forest in identifying the desired genotypes and the 

proportional contribution of measured traits in defining 
such genotypes were compared with the results obtained 

by Discriminant Analysis.

M A T E R I A L S  A N D  M E T H O D S

Plant populations and traits under study

Two populations were evaluated with the aim of 
considering two different plant breeding activities. Both 
of them represent genomic recombination among the 

same parental genotypes (cv. Caimanta of S. lycopersicum 

and LA0722 of S. pimpinellifolium) in extreme situation 
of linkage disequilibrium, genotypic composition and 

inbreeding level. The first population comprised eight 
of the 18 RILs obtained by Rodriguez et al. (2006), 

hereafter named as L1, L5, L6, L8, L9, L15, L17, and 

L18 (total N=396 plants, because some individuals 

were lost during the transplant. The final number of 
individuals per RIL is given in Table 1). These 8 RILs 
were selected for adequately representing the total 

variability. In this population, linkage disequilibrium 

is low (<0.01), inbreeding level is high (>0.99) and 

genotypes are homozygous, representing potential new 
tomato commercial cultivars derived after several cycles 

of artificial selection over both early and advanced 
generations of selfing from a cross between cultivated 
and exotic germplasms. Data analyzed in this research 
are the mean values over six years of agronomic 
evaluation because its genetic structure is stabilized 
and this population was considered as a final step in a 
breeding program.

The second population comprised two selected RILs 
(L1 and L18), their F

1
 (L18 x L1) and its segregating 

generations F
2
 (L18 x L1), obtained by selfing, and 

both backcrosses F
1
 (L18 x L1) x L18 and F

1
 (L18 x L1) x 

L1, hereafter named as F
1
, F

2
, BC

1
 and BC

2
, respectively 

(N=218 plants). In this population of basic breeding 

generations (Kearsey and Pooni, 1996), linkage 

disequilibrium is high (>0.20), inbreeding level is 

relatively low (coefficient F=0.5). Genotypes are both 
homozygous and heterozygous, representing early 
generations from a cross among elite genotypes. Gene 

segregation occurring from the meiosis in F
1
 gives 

new opportunity of recombining and selecting over 

the genotypes resulting from the previous breeding 

actions that allowed deriving the parental RILs. In fact, 

L1 and L18 are registered in the Argentinean National 

Registry of Cultivars). Data analyzed in this research 
were measured just in one year of agronomic evaluation 
because the genetic structure of the segregating 

generations (F
2
 and both BCs) varies with each cycle of 

selfing, and this population was considered as an initial 
step in a breeding program.

Both sets of population were assayed under 

greenhouse conditions at the experimental field station 
“José F. Villarino”, Universidad Nacional de Rosario, 
Argentina (Latitude: 33.02° S, Longitude: 60.88° O, 
Altitude: 50 masl) according to a completely randomized 
design with six replications. Following Mahuad et al. 
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(2013), 11 quantitative traits were evaluated, five of them 
in fruits harvested at breaker stage (when carotenoids 

accumulation becomes visible) and the other six in fruits 
harvested at red ripe stage (with approximately 90% 
of red surface). In 10 fruits per plant at breaker stage, 

weight (W, in g), diameter (D, in cm), height (H, in cm), 

shape index (SI, ratio between H and D), and shelf life 
(SL, number of days from harvest until the fruit stored 
at 25 ± 3 ºC loses commercial value due to, for instance, 

excessive softening), were measured. In fruits at red 
ripe stage, the following traits were evaluated: soluble 

solids content (SS, in Brix degrees, as the percentage 
of sucrose in the fruit juice), pH and titratable acidity 
(TA, in g of citric acid per 100 g of homogenate) of the 
fruit juice, firmness (F, measured on two opposite 
equatorial sides with a digital firmness type Shore A 
tester Durofel, DFT 100, with a 0.10 cm2 cap), ratio a/b 

or chroma index (parameter related to color tone, being 
“a” the absorbance at 540 nm wavelengths and “b” 
the absorbance at 675 nm wavelengths), and L value 

or reflectance percentage (L, parameter related to 
color intensity, presenting values that range from +100 

for white to 0 for black). Values “a”, “b” and L were 
determined with a Chroma Meter CR 400. The color 
parameters and F were determined in five intact fruits 
per plant, whereas the SS and the pH were measured in 
the juice obtained by homogenizing a variable number 
of three to eight fruits per plant, which depended on the 

fruit size. In the first set of populations, the mean locule 
number per fruit (LN) was also measured in five fruits 
per plant.

Statistical Analyses

Random Forest is a non-parametric classification 
technique of Machine Learning proposed by Breiman 

(2001). It is a classifier that generates a big number of 
decision trees, and each tree is grown from a bootstrap 

sample of the response variable. The best split is selected 
from a random subset of variables at each node of the 

tree, and then the tree grows to the maximum extent 
without pruning. Each individual is classified by each 
tree and the most common outcome is used as the final 
classification. For this classification, contribution of 
each variable to form the groups is assessed (Breiman, 

2001). In plant genetics and breeding, the quantification 
of this contribution could be considered as a description 

of phenotypes according to the importance of traits 

and it could objectively assist in the identification of 
phenotypes in their belonging to a given breeding 

population. Random Forest applies a built-in cross-

validation, which in this research consisted of a first 
training step with 2/3 of the data and a validation step 

with the remaining 1/3, according to Breiman (2001), 

to estimate set error via the use of Out-Of-Bag (OOB) 

samples. Firstly, based on the training algorithm, data 

that did not take part at a given iteration in the bootstrap 

sample (the so called OOB data) are predicted using the 

tree grown with the bootstrap sample to be assigned at a 

given group. This process is known as validation step, and 
finally, once each individual has been assigned to a given 
group according to the OOB predictions, the error rate, 

known as the OOB estimate of error rate, is calculated. 

In other words, low values of the OOB estimate of the 

error rate indicate a high precision in the classification 
(Hastie et al., 2008). Furthermore, two measures on the 

importance of variables are given by Random Forest 

(Hastie et al., 2008): the Mean Decrease Accuracy (MDA), 

which is obtained from the OOB error estimation, and 

the Mean Decrease Gini (MDG), based in the Gini Index. 
Hyperparameter tuning of RF greatly influences its 
accuracy but there is a large scientific discussion on how 
to accomplish it (Bernard et al., 2009). In this research, 

the number of tree (NT), the percentage of errors in 
global classification (GC) associated to NT and the OOB 
were taken as metrics for tuning hyperparametrization 
(Probst et al., 2019).

Machine Learning techniques have not been yet 

widely used in plant genetics and breeding with a 

similar goal to that of this research. Consequently, 

Discriminant Analysis, the most common multivariate 

technique (Lapins and Nash, 1957, Lynch et al., 1987, 

Sivakumar et al., 2017, Abu-Ellail et al., 2020), was used 

as a control for group assignment and for measuring 

the importance of variable contribution detected by 

Random Forest. Every trait was included in all cases, i.e., 

no selection of variables was accomplished neither by 

Random Forest nor by Discriminant Analysis. Random 

Forest was performed by the statistical package RStudio, 
version 1.0 (“randomForest” library, randomForest 
function), while SAS software, version 9.0, was used 
for Discriminant Analysis, through the procedure “proc 

discrim”. Significance of all statistical tests was assigned 
at a limit p-value of 0.05.

R E S U L T S 

Population of RILs

Mean values and standard deviations for evaluated traits 

across six years of agronomic evaluation are presented 
in Figure 1. A wide phenotypic variability among RILs 

was found for all traits, though, as expected, the absolute 
range of variation depended on the scale of each variable. 

In respect to Random Forest application, three variables 

were randomly selected for determining each node in 

the iterative construction of each tree, this sub-conjunct 
of traits was used for choosing the best partition. The 
percentages of errors in global classification and in 
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the classification per group (RIL) are shown in Table 1. 
From 200 constructed trees onwards, both classification 
errors were stabilized in a null value, hence there are 
none misclassifications after this number. As the most 
frequent number of trees constructions in the literature 

is at least 500, the 100% of plants were perfectly 
classified into the expected group, the OOB error being 

0%. Therefore, as 0% OOB error has been obtained with 
just 200 constructed trees (Table 1), this RIL population 
was accurately classified by Random Forest. The most 
important traits to obtain this excellent classification 
were L, TA, pH, SS and F, according to their MDA and 
MDG values (Table 2).

Figure 1 (continues). Values of the fruit traits weight (W, in g), diameter (D, in cm), height (H, in cm), shape 
index (SI, ratio H/D), shelf life (SL, in days), reflectance percentage (L, in %), chroma index (ratio a/b, being “a” 
the absorbance at 540 nm wavelengths and “b” the absorbance at 675 nm wavelengths), locule number 
(LN), soluble solids content (SS, in ºBrix), pH, titratable acidity (TA, in g of citric acid per 100 g of homogenate 
juice), and firmness (F, in %) in eight tomato RILs obtained by Rodriguez et al. (2006).
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With the control technique, Discriminant Analysis, six 
linear discriminant functions (LDF) were obtained that 

allowed classifying RILs and measuring the contribution 

of each trait to the total variability (Table 3, LDF 1 and 
LDF 2 are shown as footnotes). However, when it was 

contrasted with Random Forest, errors in misclassifying 

were greater in Discriminant Analysis (Table 3). This 

misclassification made by Discriminant Analysis 
could be explained by two reasons. Firstly, Rao’s F test 

(p<0.0001, Table 3) indicated that there were at least 
two groups of RILs which have different average vectors 
or LDF, i.e., the eight RILs are not univocally different 
among them but they could be clustered in either two, 

three, four, five or six groups, all these groups being 

Figure 1 (continuation). Values of the fruit traits weight (W, in g), diameter (D, in cm), height (H, in cm), 
shape index (SI, ratio H/D), shelf life (SL, in days), reflectance percentage (L, in %), chroma index (ratio a/b, 
being “a” the absorbance at 540 nm wavelengths and “b” the absorbance at 675 nm wavelengths), locule 
number (LN), soluble solids content (SS, in ºBrix), pH, titratable acidity (TA, in g of citric acid per 100 g of 
homogenate juice), and firmness (F, in %) in eight tomato RILs obtained by Rodriguez et al. (2006).
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statistically significant. In fact, in Table 3 it is shown 
sequentially that all the obtained LDF were significant, 
i.e. classification RILs according to these six LDF is not 
robust. Secondly, traits which were identified as the most 
important in their contribution to general variability, 

varied in respect to those identified by Random Forest. 
For instance, a/b was identified by Discriminant Analysis 

as having the most important contribution to LDF 1 

(footnote to Table3) while this trait had low contribution 
to general variability in the analysis with Random Forest 

(Table 1). Hence a lower robustness of classification is 
accomplished with Discriminant Analysis compared to 

Random Forest. In fact, differences in identifying traits 
contribution to RILs classification between Random 
Forest and Discriminant Analysis resulted in a wrong 

predicted assignation to RIL 15 of six plants actually 
belonging to RIL 9. This misclassification caused a global 
apparent error of 1.51% in Discriminant Analysis, while 
the global apparent error was null in Random Forest.

Population of Basic Generations

Mean values and standard deviations for the six basic 
generations evaluated are presented in Figure 2. Though 
some difference due to environmental influences were 
detected on the mean values of parental lines between 

both databases, general tendencies for morphologi-

cal traits were observed since L1 had flattened fruits 
with higher weight and size than L18, whose fruits were 
elongated. Also, the F

1
 phenotype agreed to gene actions 

reported by Pereira da Costa et al. (2014). For instance, 
the lower weight of F

1
 fruits was explained by negative 

dominance of exotic alleles early contributed by LA0722 
that are segregating in dispersion among L1 and L18 

(Cabodevila et al., 2021). In agreement, individuals from 

backcross to L1 (BC
2
) had slightly heavier fruits than 

those of backcross to L18 (BC
1
). Regarding variances, 

and as expected, the F
2
 generation had a larger disper-

sion than both backcrosses for all traits; the F
1
, genet-

ically uniform, and the parents were the least variable 

generations.

The different genetic structure among generations in 
this set of populations, in contrast to the previous set 

in which all populations were homozygous, provoked 
some not unexpected effects on applying classification 

Table 1. Percentage of errors in global classification (GC) and per RIL (indicated with L and the respective number, these genotypes 
are eight tomato RILs obtained by Rodriguez et al., 2006) considering different number of trees (NT) in each applied Random Forest

* Numbers in parenthesis indicate the final number of plants per RIL evaluated in the research

NT GC L1 (54)* L15 (42) L17 (30) L18 (42) L5 (66) L6 (42) L8 (54) L9 (66)

50 3.03 0 14.29 0 0 0 14.29 0 0

100 1.52 0 14.29 0 0 0 0 0 0

150 1.52 0 14.29 0 0 0 0 0 0

200 0 0 0 0 0 0 0 0 0

300 0 0 0 0 0 0 0 0 0

400 0 0 0 0 0 0 0 0 0

500 0 0 0 0 0 0 0 0 0

Fruit Trait MDA MDG

D 5.02 1.74

H 6.27 2.37

SI 6.37 3.01

W 6.69 2.53

SL 5.31 2.01

L 15.11 8.34

a/b 7.12 2.92

LN 4.39 1.14

SS 13.53 8.64

pH 13.86 8.31

F 13.25 7.20

TA 14.92 8.18

Table 2. Contribution of each fruit trait to the classification by 
Random Forest of eight tomato RILs obtained by Rodriguez 
et al. (2006), according to Mean Decrease Accuracy (MDA) 
and Mean Decrease Gini (MDG). Fruit traits: weight (W, in g), 
diameter (D, in cm), height (H, in cm), shape index (SI, ratio 
H/D), shelf life (SL, in days), reflectance percentage (L, in %), 
chroma index (ratio a/b, being “a” the absorbance at 540 nm 
wavelengths and “b” the absorbance at 675 nm wavelengths), 
locule number (LN), soluble solids content (SS, in ºBrix), pH, 
titratable acidity (TA, in g of citric acid per 100 g of homogenate 
juice), and firmness (F, in %).
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techniques. Firstly, when including the F
2
 generation 

either in Random Forest or in Discriminant Analysis, 

plants from all other generations were misclassified 
as belonging to the F

2
 (data not shown). Even though 

differences in population size, common to plant 
breeding process, could explain this observation, the 
actual cause of this misclassification is the segregation 
of genes observed in the F

2
, BC

1
, and BC

2
 generations 

while both parents and the F
1
 are uniformly homozygote 

and heterozygote, respectively. Then the higher level 
of segregation and recombination among the F

2
 in 

comparison to both BC
1
 and BC

2
 explains that even 

for not genetically uniform generation, all plant were 

classified as belonging to the F
2
. Hence, data from F

2
 

generation were not taken into account for applying 

both classification techniques.
Similar to the previous study in RIL population, 

randomly selecting based on three variables was chosen 

for dividing the nodes in the iteratively construction 

of the trees during training the algorithm. However, 

Table 4 shows that, even considering 500 trees, errors 
in global classification and in classification per groups 
are not eliminated. Given that in 200 trees errors are 

stabilized in minimum values, this number is retained 
for continuing the analysis. However, the robustness of 

classification in this population is lower than in the RILs 
population previously analyzed according to this data 
respecting the number of trees construction. In fact, of 

the 120 evaluated plants, only 78 (65%), all belonging 
to the backcrosses generations (Table 5), could be 
adequately assigned to their respective group. Of these 

two backcrosses, BC
1
 plants were better assigned (91% 

classified as BC
1
 and 9% as BC

2
) than BC

2
 plants (76.6 % 

classified as BC
2
, 17% as BC

1
, and 6.4% as L1). All parental 

and F
1
 plants were misclassified as either BC

1
 or BC

2
. The 

importance of the variables to classification algorithm 
explain these observations, given that SI (particularly 
higher in L18 and its BC

1
) had the greatest MDA and 

MDG, i.e., the greatest contribution to construct the 

decision trees (Table 6). Other important traits were SS, 
D, and H, though their MDA and MDG values were low 

compared to SI.
In respect to the control technique Discriminant 

Analysis, the existence of at least two generations with 
different mean vectors or LDF was contrasted with 
Rao’s F test (p<0.0001). Though four LDF were obtained 
in the analysis, the latter 2 were no significant in this 
population of basic generations. In fact, just the two 
first LDF, whose composition is shown as a footnote 
in Table 7, had strictly statistical significance. Traits 
mostly contributing to LDF 1 were D (1.97), H (-1.14), 
and a/b (-0.72), while again D (-1.04) and H (0.84) 
together with pH (-0.80) were the most important in 

LDF 2. Interestingly, SI was not detected as a highly 
important trait by Discriminant Analysis, possibly due to 

heteroscedasticity. Accordingly, Discriminant Analysis 

had lower ability than Random Forest for classifying 

plants, and only 67 over 120 plants (56%) were correctly 
assigned to their respective group (Table 8). However, 
though both techniques got a best classification for 
both backcrosses (72.7% in BC

1
 and 53.9% in BC

2
), 

Discriminant Analysis, in opposition to Random Forest 

could adequately assign some F
1
 and L1 plants. Despite 

this observation, its estimated apparent error is very 

high (43.48%). Though many tomato plants from these 
basic breeding generations were misclassified by both 

Steps of ST Null Hypothesis Canonical 
Correlation (CC)

Square 
CC

F-value p-value

1 None LDF is significant 0.99 0.98 103.01 <0.0001

2 Only LDF 1 is significant 0.99 0.98 60.71 <0.0001

3 Only LDF 1 and 2 are significant 0.98 0,96 41.61 <0.0001

4 LDF 1, 2, and 3 are significant 0.96 0,92 27.33 <0.0001

5 LDF 1, 2, 3, and 4 are significant 0.94 0.88 20.34 <0.0001

6 LDF 1, 2, 3, 4, and 5 are significant 0.83 0.66 12.00 <0.0001

7 LDF 1, 2, 3, 4, 5, and 6 are significant 0.72 0.52 9.46 <0.0001

Table 3. Significance of the Sequential Test (ST) for the Linear Discriminant Functions (LDF) in the Discriminant Analysis applied to 
eight tomato RILs obtained by Rodriguez et al. (2006)

The first two LDF, with standardized coefficients and traits, were:

LDF 1 = - 0.41 D + 0,89 H – 0.32 SI – 0.57 W + 0,17 SL – 0.03 L – 1.01 a/b + 0.09 LN – 0.34 SS – 0.30 pH + 0.02 F + 0.05 TA

LDF 2 = - 1.04 D + 0.84 H – 0.37 SI – 0.03 W + 0,003 SL – 0.04 L + 0.15 a/b + 0.13 LN + 0.37 SS – 0.80 pH + 0.40 F + 0.11 TA
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techniques, it is noteworthy that just plant 7 from RIL 18 
was assigned to a different group, concretely to BC

2
 by 

Random Forest and to BC
1
 by Discriminant Analysis. In 

all other cases, misclassification on individuals was to 
the same erroneous group (data not shown).

D I S C U S S I O N

Random Forest and other Learning Machine approaches 

have been used in phenotyping at both morphological 

and metabolic level (Amit and Geman, 1997; Singh et 

Figure 2 (continues). Values of the fruit traits weight (W, in g), diameter (D, in cm), height (H, in cm), 
shape index (SI, ratio H/D), shelf life (SL, in days), reflectance percentage (L, in %), chroma index 
(ratio a/b, being “a” the absorbance at 540 nm wavelengths and “b” the absorbance at 675 nm 
wavelengths), soluble solids content (SS, in ºBrix), pH, titratable acidity (TA, in g of citric acid per 100 g 
of homogenate juice), and firmness (F, in %) in the population composed by two parental tomato RILs 
(L18 and L1; obtained by Rodriguez et al. 2006), their F1 (second cycle hybrid L18 x L1), and the segregating 
generations F2 (obtained by selfing the F1), BC1 (F1 x L18) and BC2 (F1 x L1).
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al., 2016; Zhao et al., 2016, Trainor et al., 2017) and in 

genomic studies (Chen and Ishwaran, 2012). However, 

the direct applications in practical situations of 

plant genetics and breeding, as were reported in this 

paper, have been infrequent. Though Random Forest 

was used in studies on wide genomic associations, 

detection of correlation among phenotypic traits and 

molecular markers and identification of different fruits, 
classification of breeding populations exclusively based 
in phenotypes is a vacant application (Biau, 2012; Chen 

Figure 2 (continuation). Values of the fruit traits weight (W, in g), diameter (D, in cm), height (H, in 
cm), shape index (SI, ratio H/D), shelf life (SL, in days), reflectance percentage (L, in %), chroma index 
(ratio a/b, being “a” the absorbance at 540 nm wavelengths and “b” the absorbance at 675 nm 
wavelengths), soluble solids content (SS, in ºBrix), pH, titratable acidity (TA, in g of citric acid per 100 g 
of homogenate juice), and firmness (F, in %) in the population composed by two parental tomato RILs 
(L18 and L1; obtained by Rodriguez et al. 2006), their F1 (second cycle hybrid L18 x L1), and the segregating 
generations F2 (obtained by selfing the F1), BC1 (F1 x L18) and BC2 (F1 x L1).
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and Ishwarab, 2012). Regarding this vacancy, a common 

but not desirable situation in plant breeding programs is 

the loss of identification of plant material in a given plot 
or genotype’s mix when manipulating seeds, especially 
when exotic germplasm was introgressed (Dempewolf et 

al., 2017). Hence the availability of reliable classification 
methods based on fast and easy to evaluate phenotypic 

traits and generated by supervised tools would be greatly 

advantageous. However, due to the different genetic 
structure of the various breeding populations coexisting 
in the same program, it is necessary to evaluate the 

adequacy of developing classification tools exclusively 
based on phenotypic variability using Random Forest for 

each types of population. Classification of individuals 
for improving their management in hybridization, 
recombination and selection, taking into account 

not only general variability but also traits mostly 

contributing to its conformation is a key step in breeding 

programs, as well as in defining the best phenotype for 
each situation (Niazian and Niedbała, 2020). According 
to our results, Random Forest was a better classifying 

technique than the most widely applied Discriminant 

Analysis. However, classification was better by either 
technique in final stages than in early stages of breeding 
programs. In final stages, when variability is dispersed 
and fixed among pure lines or other uniform population 
by effect of both artificial selection and inbreeding, 
best phenotypes appear to be more precisely classified 
than in early stages, when variability is created by 

crosses and recombination. Both the greater level of 

gene segregation and particularly the higher linkage 

disequilibrium of the population of basic generations, 

account for the less reliable classification obtained 
in it by both statistical methods. In consequence, the 

different genetic structure between both populations 
hinders the establishment of a robust algorithm for 

Table 4. Percentage of errors in global classification (GC) and per generation (L1: parental RIL 
1, L18: parental RIL 18, F1; second cycle hybrid L18 x L1, BC1: backcross F1 x L18, BC2: backcross F1 x L1, 
these genotypes are the six basic generations derived from RILs 1 and 18 obtained by Rodriguez 
et al, 2006, to initiate a breeding program) considering different number of trees (NT) in each 
applied Random Forest

Table 5. Predicted classification of plants into groups (basic breeding generations L1: parental 
RIL 1, L18: parental RIL 18, F1: second cycle hybrid L18 x L1, BC1: backcross F1 x L18, BC2: backcross F1 

x L1) in the training and validation of Random Forest (Method Out of Bag, OOB). L1 and L18 are 
tomato RILs obtained by Rodríguez et al. (2006)

* Numbers in parenthesis indicate the final number of plants per generation evaluated in the research

NT GC F1 (10)* L1 (9) L18 (8) BC1 (46) BC2 (47)

50 41.30 100 100 100 18.18 47.06

100 32.61 100 100 100 9.09 35.29

150 30.43 100 100 100 9.09 29.41

200 28.26 100 100 100 9.09 23.53

300 28.26 100 100 100 9.09 23.53

400 30.43 100 100 100 9.09 29.41

500 30.43 100 100 100 9.09 29.41

Actual Group Predicted Group Total (%)

F1 L1 L18 BC1 BC2

F
1

0 (0) 0 (0) 0 (0) 5 (50) 5 (50) 10 (100)

L
1

0 (0) 0 (0) 0 (0) 0 (0) 9 (100) 9 (100)

L18 0 (0) 0 (0) 0 (0) 4 (50) 4 (50) 8 (100)

BC
1

0 (0) 0 (0) 0 (0) 42 (91) 4 (9) 46 (100)

BC
2

0 (0) 3 (6.4) 0 (0) 8 (17.0) 36 (76.6) 47 (100)

https://acsess.onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Dempewolf%2C+Hannes
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categorizing earlier breeding step generations. However 
it allows a better classification in the final step (the 
population of RILs) since they represent different gene 
associations from the same single cross. In fact, RILs 

also had a high level of segregation (Pratta et al., 2011) 

but their linkage disequilibrium was low (Cambiaso et 

al., 2019). Though imbalance of data could also partially 
explain a less robust classification, in this research 
the number of individuals composing the unities of 

classification was certainly more noticeable in the 
population of basic generations than in the population of 

RILs but this is a common fact in plant breeding assays 

due to the different genotypic constitution of parents, F
1
 

and segregating F
2
 and BCs.

The identification of variables most important 
for classification was more accurate and robust with 
Random Forest than with Discriminant Analysis, hence 

description of phenotypes was more precise using the 

first technique. Additionally, the genetic structure of a 
population may be assessed by multivariate methods, as 

Principal Component Analysis, whose main application 

is related to the characterization of general variability. 
Though this method is often used for classification, it is 
not adequate enough for categorizing. However, it can 
be used in a preliminary approach to reduce the data 

dimensionality and then apply classification methods 
such as Random Forest or Discriminant Analysis to obtain 

an appropriate classification (Hastie et al., 2008). Finally, 

it is interesting to point out that Discriminant Analysis 

is a parametric statistical technique while Random 

Forest is a non parametric one. One of the assumptions 

in Discriminant Analysis is that the variables come 

from a multivariate normal distribution. However, this 

assumption is not a requirement for Random Forest 

application, which becomes an additional advantage.

Random Forest was more accurate and robust than 

Traits MDA MDG

D 2.99 3.62

H 2.49 2.23

SI 5.26 6.08

W 0.18 2.69

SL -0.79 1.65

L 0.84 2.28

a/b 0.59 1.78

SS 3.82 2.82

pH -1.27 1.84

F -1.52 1.19

TA 1.41 2.01

Table 6. Contribution of each fruit trait to the classification with 
Random Forest of five breeding basic generations according 
to Mean Decrease Accuracy (MDA) and Mean Decrease Gini 
(MDG). The genotypes are the basic generations derived from 
RILs 1 and 18 obtained by Rodriguez et al, 2006, to initiate a 
breeding program. Fruit traits: weight (W, in g), diameter (D, in 
cm), height (H, in cm), shape index (SI, ratio H/D), shelf life (SL, 
in days), reflectance percentage (L, in %), chroma index (ratio 
a/b, being “a” the absorbance at 540 nm wavelengths and “b” 
the absorbance at 675 nm wavelengths), soluble solids content 
(SS, in ºBrix), pH, titratable acidity (TA, in g of citric acid per 100 g 
of homogenate juice), and firmness (F, in %).

Steps of ST Null Hypothesis Canonical 
Correlation (CC)

Square 
CC

F-value p-value

1 None LDF is significant 0.86 0.73 3.06 <0.0001

2 Only LDF 1 is significant 0.73 0.53 2.19 0.0022

3 Only LDF 1 and 2 are significant 0.67 0.45 1.80 0.0632

4 LDF 1, 2, and 3 are significant 0.43 0.18 0.94 0.4968

Table 7. Significance of the Sequential Test (ST) for the Linear Discriminant Functions (LDF) in the Discriminant Analysis applied to 
the population of basic generations derived from RILs 1 and 18 obtained by Rodriguez et al, 2006, to initiate a breeding program

The first two LDF, with standardized coefficients and traits, were:

LDF 1 = 1.97 D – 1.14 H + 0.14 SI – 0.50 W – 0.07 SL – 0.14 L – 0.72 a/b – 0.57 SS – 0.22 pH - 0.72 F + 0.15 TA

LDF  2 = 1.67 D + 0.14 H + 0.59 SI – 1.16 W – 0.26 SL + 0.83 L + 0.41 a/b - 0.44 SS – 0.06 pH + 0.26 F + 0.18 TA
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Discriminant Analysis for classifying tomato genotypes 

by phenotypic fruit quality traits at two different 
usual situations of plant breeding. Though a specific 
application such as identification of eventual unknown 
group of plants, was approached in the present research, 

a wide use of this technique in plant genetics and breeding 

can be proposed from these results. For instance, the 

evaluation of general variability, the identification of 
traits that most contribute to this variability, and even 

the definition of the best phenotype at different steps 
in breeding programs, are potential areas of application 

for Random Forest.
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