Vol. XXX Issue 1
Article 1

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><!-- [et_pb_line_break_holder] --><html xmlns="http://www.w3.org/1999/xhtml"><!-- [et_pb_line_break_holder] --><head><!-- [et_pb_line_break_holder] --><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /><!-- [et_pb_line_break_holder] --><title>Untitled Document</title><!-- [et_pb_line_break_holder] --></head><!-- [et_pb_line_break_holder] --><!-- [et_pb_line_break_holder] --><body><!-- [et_pb_line_break_holder] --><p align="right"><b><font size="3" face="Arial, Helvetica, sans-serif">SHORT COMMUNICATION</font></b></p><!-- [et_pb_line_break_holder] --><p><font size="4" face="Arial, Helvetica, sans-serif"><strong>Partial sequences of the gene that codifies for</strong> <!-- [et_pb_line_break_holder] --> <strong>the transcription factor <em>VPHSFB1 </em>in <em>Vasconcellea</em></strong> <!-- [et_pb_line_break_holder] --> <strong><em>pubescens</em>. First report</strong></font></p><!-- [et_pb_line_break_holder] --><p><b><i><font size="3" face="Arial, Helvetica, sans-serif">Secuencias parciales del gen que codifica para el <!-- [et_pb_line_break_holder] --> factor de transcripción VPHSFB1 en Vasconcellea pubescens. Primer reporte</font></i></b></p><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">Arizala-Quinto E. D<sup>1</sup>, Viteri G.<sup>1</sup> Idrovo-Espín F.M.<sup>1,2</sup></font></b></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><sup>1</sup> Universidad de Las Américas UDLA. <!-- [et_pb_line_break_holder] -->Facultad de Ingeniería y Ciencias <!-- [et_pb_line_break_holder] -->Aplicadas. Calle José Queri s/n <!-- [et_pb_line_break_holder] -->entre Av. Eloy Alfaro y Granados<br /><!-- [et_pb_line_break_holder] --><sup>2</sup> Universidad Central del Ecuador. <!-- [et_pb_line_break_holder] -->Facultad de Ciencias Químicas. <!-- [et_pb_line_break_holder] -->Francisco Viteri s/n y Gato Sobral. <!-- [et_pb_line_break_holder] -->Quito-Ecuador</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> <b>Corresponding author</b>: <!-- [et_pb_line_break_holder] --> F.M Idrovo-Espín <!-- [et_pb_line_break_holder] --> <a href="mailto:f.idrovo@udlanet.ec">f.idrovo@udlanet.ec</a></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">DOI: 10.35407/bag.2019.XXX.01.01</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Received</b>: 12/12/2017<br /><!-- [et_pb_line_break_holder] --> <b>Accepted</b>: 10/08/2018</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong><font size="2">ABSTRACT</font></strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">Plant heat stress transcription factors (HSFs) are involved in the response to heat. In<!-- [et_pb_line_break_holder] --> Arabidopsis thaliana the HSFs genes are completely identified, however there was no<!-- [et_pb_line_break_holder] --> information available about these genes in Vasconcellea pubescens (Chamburo) until now.<!-- [et_pb_line_break_holder] --> In this preliminary work we describe the VPHSFB1 gene of V. pubescens (gene expression<!-- [et_pb_line_break_holder] --> evaluated by RT-PCR and the partial sequence) that was induced by the increment of<!-- [et_pb_line_break_holder] --> temperature. From our results, VPHSFB1 could be used as a heat response marker gene in<!-- [et_pb_line_break_holder] --> tropical species.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Key words</b>: Caricaceae; Gene expression; Heat.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>RESUMEN</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">Los factores de transcripción del estrés por calor en plantas (<em>HSFs</em>) están involucrados en la<!-- [et_pb_line_break_holder] --> respuesta al calor. En <em>Arabidopsis thaliana </em>los genes <em>HSFs </em>están completamente identificados,<!-- [et_pb_line_break_holder] --> sin embargo no había información disponible sobre estos genes en <em>Vasconcellea pubescens</em><!-- [et_pb_line_break_holder] --> (Chamburo) hasta ahora. En este trabajo preliminar describimos el gen <em>VPHSFB1 </em>de <em>V.</em><!-- [et_pb_line_break_holder] --> <em>pubescens </em>(expresión génica evaluada por RT-PCR y la secuencia parcial) que fue inducido<!-- [et_pb_line_break_holder] --> por el incremento de temperatura. A partir de nuestros resultados, se podría usar a <em>VPHSFB1</em><!-- [et_pb_line_break_holder] --> como un gen marcador de respuesta a calor en especies tropicales.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Palabras clave</b>: Caricaceae; Expresión génica; Calor.</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>INTRODUCTION</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><!-- [et_pb_line_break_holder] --> Plant heat stress transcription factors (<em>HSFs</em>) are essential components of the<!-- [et_pb_line_break_holder] --> signal transduction involved in the expression of genes responsive to this kind<!-- [et_pb_line_break_holder] --> of abiotic stress (Nover <em>et al.</em>, 2001). In <em>A. thaliana </em>21 members of <em>HSFs </em>belonging<!-- [et_pb_line_break_holder] --> to three genes classes A, B and C, have been identified (Kotak <em>et al.</em>, 2004). Among<!-- [et_pb_line_break_holder] --> these, <em>ATHSFB1 </em>(Class B) is necessary for the expression of heat stress inducible<!-- [et_pb_line_break_holder] --> genes (as heat shock protein genes) that are involved in thermotolerance (Ikeda<!-- [et_pb_line_break_holder] --> et al., 2011).<!-- [et_pb_line_break_holder] --> Caricaceae is a family composed by six genera, two of them are <em>Vasconcellea</em><!-- [et_pb_line_break_holder] --> and <em>Carica</em>. The 21 species that belong to genus <em>Vasconcellea </em>(collectively known<!-- [et_pb_line_break_holder] --> as highland papayas) are distributed in South America, endemically in some<!-- [et_pb_line_break_holder] --> countries, as Ecuador (Scheldeman <em>et al.</em>, 2011). It has been estimated that<!-- [et_pb_line_break_holder] --> <em>Vasconcellea </em>diverged from <em>Carica </em>25 Ma ago (Carvahlo and Renner, 2012).<br /><!-- [et_pb_line_break_holder] --></font><font size="3" face="Arial, Helvetica, sans-serif">More specifically the exotic species <em>V. pubescens </em>has<!-- [et_pb_line_break_holder] --> interesting properties and uses, ranging from high levels<!-- [et_pb_line_break_holder] --> of antioxidants (Simirgiotis <em>et al.</em>, 2009), gastric ulcers<!-- [et_pb_line_break_holder] --> treatments (Mello <em>et al</em>., 2008), dermal antitumoral<!-- [et_pb_line_break_holder] --> therapy (Dittz <em>et al</em>., 2015) to biofilm production based<!-- [et_pb_line_break_holder] --> on Papain against cavities (Torres and Obando, 2016).<!-- [et_pb_line_break_holder] --> In this preliminary work, we report the partial<!-- [et_pb_line_break_holder] --> sequence of the <em>V. pubescens VPHSFB1 </em>gene, a phylogenetic<!-- [et_pb_line_break_holder] --> analysis with related sequences and the expression<!-- [et_pb_line_break_holder] --> banding pattern of <em>VPHSFB1 </em>after temperature increase.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>MATERIALS AND METHODS</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Oligonucleotides for RT-PCR amplification and further<!-- [et_pb_line_break_holder] --> sequencing of the amplicons were designed from the<!-- [et_pb_line_break_holder] --> <em>CPHSFB1 </em>gene reported by Tarora <em>et al</em>. (2010). Germinated<!-- [et_pb_line_break_holder] --> seedlings (75 days old) were subjected to increment of<!-- [et_pb_line_break_holder] --> temperature (from 25° C to 33° C or 45° C) for a period<!-- [et_pb_line_break_holder] --> of 4 hs; seedlings at 25° C were used as controls. After<!-- [et_pb_line_break_holder] --> applying the temperature treatment, RNA was extracted<!-- [et_pb_line_break_holder] --> from leaves (PureLink RNA MiniKit, Ambion), then RTPCR<!-- [et_pb_line_break_holder] --> was performed (Superscript III One Step RT-PCR,<!-- [et_pb_line_break_holder] --> Invitrogen) and, finally, agarose gel electrophoresis<!-- [et_pb_line_break_holder] --> (1% agarose, 45 min, 80 volts) was performed and<!-- [et_pb_line_break_holder] --> documented. Amplicons were sequenced twice in<!-- [et_pb_line_break_holder] --> UDLA research laboratory (ABI 3130 Genetic Analyzer).<!-- [et_pb_line_break_holder] --> Phylogenetic analysis was made in comparison with <em>HSFs</em><!-- [et_pb_line_break_holder] --> selected sequences with MEGA7 (Kumar <em>et al</em>., 2016).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>RESULTS AND DISCUSSION</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Phylogenetic analysis of partial sequences of the</strong><!-- [et_pb_line_break_holder] --> <strong>VPHSFB1gene<br /><!-- [et_pb_line_break_holder] --> </strong><!-- [et_pb_line_break_holder] --> From a PCR product (plants at 25° C) we obtained two<!-- [et_pb_line_break_holder] --> partial sequences of <em>V. pubescens </em>heat stress transcription<!-- [et_pb_line_break_holder] --> factor (<a href="#fig1">Figure 1</a>), hereinafter referred to as <em>VPHSB1a </em>(340<!-- [et_pb_line_break_holder] --> bp) and <em>VPHSB1b </em>(330 bp).</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig1" id="fig1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="3" face="Arial, Helvetica, sans-serif"><strong><font size="2"><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/a01fig1.jpg" width="400" height="436" /><br /><!-- [et_pb_line_break_holder] -->Figure 1. </font></strong><font size="2">Clustal w alignment of partial sequences of the <em>VPHSFB1 gene.</em></font></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"> Despite the fact that the sequences were only<!-- [et_pb_line_break_holder] --> fragments of the <em>VPHSFB1 </em>gene, the phylogenetic tree<!-- [et_pb_line_break_holder] --> (<a href="#fig2">Figure 2</a>) exhibited one major clade comprising the <em>HSF </em>sequences of <em>V. pubescens</em>, <em>A. thaliana</em>, <em>C. papaya</em> and <em>Brassica rapa</em>. Within this clade, a subclade was<!-- [et_pb_line_break_holder] --> formed with the Caricaceae members; this was the<!-- [et_pb_line_break_holder] --> expected topology since <em>V. pubescens </em>and papaya are<!-- [et_pb_line_break_holder] --> more related between them than with Arabidopsis. The<!-- [et_pb_line_break_holder] --> other sequences in this analysis remained unsolved.<!-- [et_pb_line_break_holder] --> Interestingly, the sequences in the Caricaceae subclade<!-- [et_pb_line_break_holder] --> seemed to have accumulated changes earlier that the<!-- [et_pb_line_break_holder] --> ancestral lineage split between Arabidopsis and <em>Brassica</em>.<!-- [et_pb_line_break_holder] --> This may have been because <em>V. pubescens </em>and papaya are<!-- [et_pb_line_break_holder] --> strictly tropical species, as Carvahlo and Renner (2012)<!-- [et_pb_line_break_holder] --> have shown in their biogeographic study. Therefore, it<!-- [et_pb_line_break_holder] --> is feasible that Caricaceae developed specialized <em>HSF</em> genes in order to cope with higher temperatures earlier<!-- [et_pb_line_break_holder] --> than Arabidopsis or <em>Brassica</em>, which are less adapted to<!-- [et_pb_line_break_holder] --> tropical climates.<!-- [et_pb_line_break_holder] --> From the alignment of all sequences (not shown),<!-- [et_pb_line_break_holder] --> the highest identity percentages were obtained by<!-- [et_pb_line_break_holder] --> comparing <em>VPHSFB1 </em>with <em>CPHSFB1</em>, thus, we conclude<!-- [et_pb_line_break_holder] --> that these sequences are orthologs among them.</font></p><!-- [et_pb_line_break_holder] --><p><a name="fig2" id="fig2"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><strong><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/a01fig2.jpg" width="268" height="268" /><br /><!-- [et_pb_line_break_holder] --> Figure 2. </strong>Maximum Likelihood phylogenetic<!-- [et_pb_line_break_holder] --> tree based on a MUSCLE alignment of partial<!-- [et_pb_line_break_holder] --> selected sequences <em>HSFs </em>genes (<em>C. papaya</em> CPHSFB1/AB506766.1, <em>A. thaliana ATHSFB1/</em> <em>AT4G36990</em>, <em>Brassica rapa BRHSF</em>/EU186351.1, <em>Populus trichocarpa PTHSF31</em>/GI566202080, <em>Vitis vinifera VVHSF30</em>/NM001303086.1). The tree<!-- [et_pb_line_break_holder] --> was rooted with 20SPAB1 <em>(AT1G16470.1) </em>that<!-- [et_pb_line_break_holder] --> encodes for the 20S proteasome subunit PAB1<!-- [et_pb_line_break_holder] --> in <em>A. thaliana </em>(Iida <em>et al.</em>, 2009). The identity<!-- [et_pb_line_break_holder] -->percentage of orthologs from <em>V. pubescens</em>, <em>A.</em> <em>thaliana </em>and <em>C. papaya </em>are shown below.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Expression banding pattern of the VPHSFB1 gene</strong><!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Although the expression of <em>VPHSFB1 </em>is constitutive<!-- [et_pb_line_break_holder] --> at the assayed temperatures, the intensity of bands<!-- [et_pb_line_break_holder] --> obtained by gel electrophoresis (<a href="#fig3">Figure 3</a>) increased<!-- [et_pb_line_break_holder] --> at higher temperatures. Previously Tarora <em>et al</em>. (2010)<!-- [et_pb_line_break_holder] --> characterized the ortholog <em>CPHSFB1 </em>gene in papaya. In<!-- [et_pb_line_break_holder] --> a Northern blot analysis, it was observed that this gene<!-- [et_pb_line_break_holder] --> accumulated transcripts differentially after temperature<!-- [et_pb_line_break_holder] --> increase (from 24° C to 42° C) and, thus it is responsive<!-- [et_pb_line_break_holder] --> to heat stress. This behavior is similar to the observed in<!-- [et_pb_line_break_holder] --> our analysis, which revealed the involvement of <em>VPHSFB1</em><!-- [et_pb_line_break_holder] --> in the response to temperature increment and, probably,<!-- [et_pb_line_break_holder] --> in heat stress.<!-- [et_pb_line_break_holder] --> We conclude that an ortholog <em>VPHSFB1 </em>gene is present<!-- [et_pb_line_break_holder] --> in the genome of <em>V. pubescens</em>, which is responsive to<!-- [et_pb_line_break_holder] --> temperature increment, and that this gene could be used<!-- [et_pb_line_break_holder] --> as a marker for heat stress assays in this tropical species.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><a name="fig3" id="fig3"></a></font></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><strong><img src="https://sag.org.ar/jbag/wp-content/uploads/2019/11/a01fig3.jpg" width="242" height="154" /><br /><!-- [et_pb_line_break_holder] --> Figure 3. </strong>Banding pattern obtained from<!-- [et_pb_line_break_holder] --> control plants (25° C) and plants under<!-- [et_pb_line_break_holder] --> temperature increase (33.5° C and 45° C). 18S<!-- [et_pb_line_break_holder] --> gene expression was used as a positive control.<!-- [et_pb_line_break_holder] --> Controls with no template showed any band.<!-- [et_pb_line_break_holder] --> The assay was made in triplicates with similar<!-- [et_pb_line_break_holder] --> results.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>ACKNOWLEDGEMENTS</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> To the Ministry of the Environment of Ecuador<!-- [et_pb_line_break_holder] --> (MAE) for the permissions granted (MAEDNB-<!-- [et_pb_line_break_holder] --> CM-2017-0063), to Lien González for her<!-- [et_pb_line_break_holder] --> support and valuable comments. This work was<!-- [et_pb_line_break_holder] --> supported by UDLA (grant INV/F/PPI/1/0814).</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>REFERENCES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">1. Carvalho F.A., Renner S.S. (2012) A<!-- [et_pb_line_break_holder] --> dated phylogeny of the papaya family<!-- [et_pb_line_break_holder] --> (Caricaceae) reveals the crop’s closest<!-- [et_pb_line_break_holder] --> relatives and the family’s biogeographic<!-- [et_pb_line_break_holder] -->history. Mol. Phylogenet. Evol. 65: 46-53.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 2. Dittz D., Figueiredo C., Lemos F., Viana C., Andrade<!-- [et_pb_line_break_holder] --> S., Souza-Fagundes E., Fujiwara R.T., Salas<!-- [et_pb_line_break_holder] --> C.E., Lopes M. (2015) Antiangiogenesis, Loss<!-- [et_pb_line_break_holder] --> of Cell Adhesion and Apoptosis Are Involved<!-- [et_pb_line_break_holder] --> in the Antitumoral Activity of Proteases from<!-- [et_pb_line_break_holder] --> <em>V. cundinamarcensis </em>(<em>C. candamarcensis</em>) in<!-- [et_pb_line_break_holder] --> Murine Melanoma B16F1. Int. J. Mol. Sci. 16:<!-- [et_pb_line_break_holder] --> 7027-7044.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 3. Iida K., Fukami-Kobayashi K., Toyoda A.,<!-- [et_pb_line_break_holder] --> Sakaki Y., Kobayashi M., Seki M., Shinozaki<!-- [et_pb_line_break_holder] --> K. (2009) Analysis of multiple occurrences<!-- [et_pb_line_break_holder] --> of alternative splicing events in Arabidopsis<!-- [et_pb_line_break_holder] --> thaliana using novel sequenced full-length<!-- [et_pb_line_break_holder] --> cDNAs. DNA Res. 16: 155-164.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 4. Ikeda M., Mitsuda N., Ohme-Takagi M.<!-- [et_pb_line_break_holder] --> (2011). Arabidopsis HsfB1 and HsfB2b act<!-- [et_pb_line_break_holder] --> as repressors of the expression of heatinducible<!-- [et_pb_line_break_holder] --> Hsfs but positively regulate the<!-- [et_pb_line_break_holder] --> acquired thermotolerance. Plant Physiol.<!-- [et_pb_line_break_holder] --> 157(3): 1243-1254.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 5. Kotak S., Port M., Ganguli A., Bicker F., von<!-- [et_pb_line_break_holder] --> Koskull-Doring P. (2004) Characterization<!-- [et_pb_line_break_holder] --> of C-terminal domains of Arabidopsis heat<!-- [et_pb_line_break_holder] --> stress transcription factors (Hsfs) and<!-- [et_pb_line_break_holder] --> identification of a new signature combination<!-- [et_pb_line_break_holder] --> of plant class A Hsfs with AHA and NES<!-- [et_pb_line_break_holder] --> motifs essential for activator function and<!-- [et_pb_line_break_holder] --> intracellular localization. Plant J. 39: 98-112.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 6. Kumar S., Stecher G., Tamura K. (2016) MEGA7:<!-- [et_pb_line_break_holder] --> Molecular evolutionary genetics analysis<!-- [et_pb_line_break_holder] --> version 7.0 for bigger datasets. Mol. Biol. Evol.<!-- [et_pb_line_break_holder] --> 33: 1870-1974.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 7. Mello V., Gomes M., Lemos F., Delfino J., Andrade<!-- [et_pb_line_break_holder] --> S., Lopes M., Salas C. (2008) The gastric<!-- [et_pb_line_break_holder] --> ulcer protective and healing role of cysteine<!-- [et_pb_line_break_holder] --> proteinases from <em>Carica candamarcensis</em>.<!-- [et_pb_line_break_holder] --> Phytomedicine 15: 237-244.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 8. Nover L., Bharti K., Döring P., Kumar M.S.,<!-- [et_pb_line_break_holder] --> Ganguli A., Scharf K.D. (2001) Arabidopsis<!-- [et_pb_line_break_holder] --> and the heat stress transcription factor world:<!-- [et_pb_line_break_holder] --> how many heat stress transcription factors do<!-- [et_pb_line_break_holder] --> we need? Cell Stress Chaperon 6: 177-189.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 9. Scheldeman X., Kyndt T., Coppens d’Eeckenbrugge<!-- [et_pb_line_break_holder] --> G., Ming R., Drew R., Droogenbroeck B., Van<!-- [et_pb_line_break_holder] --> Damme P., Moore P. (2011). Vasconcellea. In:<!-- [et_pb_line_break_holder] --> Kole C. (Ed.) Wild Crop Relatives: Genomic and<!-- [et_pb_line_break_holder] --> Breeding Resources. Springer-Verlag, Berlin,<!-- [et_pb_line_break_holder] --> pp. 213-249.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 10. Simirgiotis M., Caligari P., Schmeda-<!-- [et_pb_line_break_holder] --> Hirschmann G. (2009) Identification of<!-- [et_pb_line_break_holder] --> phenolic compounds from the fruits of the<!-- [et_pb_line_break_holder] --> mountain papaya <em>Vasconcellea pubescens </em>A. DC.<!-- [et_pb_line_break_holder] --> grown in Chile by liquid chromatography-UV<!-- [et_pb_line_break_holder] --> detection-mass spectrometry. Food Chem.<!-- [et_pb_line_break_holder] --> 115: 775-784.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 11. Tarora K., Tamaki M., Shudo A., Urasaki N.,<!-- [et_pb_line_break_holder] --> Matsumura H., Adaniya S. (2010) Cloning of a<!-- [et_pb_line_break_holder] --> heat stress transcription factor, CphsfB1, that<!-- [et_pb_line_break_holder] --> is constitutively expressed in radicles and is<!-- [et_pb_line_break_holder] --> heat-inducible in the leaves of <em>Carica papaya</em>.<!-- [et_pb_line_break_holder] --> Plant Cell Tissue Organ Cult. 102: 69-77.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 12. Torres K., Obando G. (2016) Rapid enzimatic<!-- [et_pb_line_break_holder] --> disruption of <em>Enterococcus faecalis </em>biofilm<!-- [et_pb_line_break_holder] --> using <em>Carica pubescens</em>: a pilot study. WMCCR<!-- [et_pb_line_break_holder] --> 2: 1-4.</font></p><!-- [et_pb_line_break_holder] --></body><!-- [et_pb_line_break_holder] --></html>
Verified by MonsterInsights