Vol. XXX Issue 2
Article 5

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"><!-- [et_pb_line_break_holder] --><html xmlns="http://www.w3.org/1999/xhtml"><!-- [et_pb_line_break_holder] --><head><!-- [et_pb_line_break_holder] --><meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" /><!-- [et_pb_line_break_holder] --><title>Documento sin título</title><!-- [et_pb_line_break_holder] --></head><!-- [et_pb_line_break_holder] --><!-- [et_pb_line_break_holder] --><body><!-- [et_pb_line_break_holder] --><p align="right"><font size="3" face="Arial, Helvetica, sans-serif"><strong>ARTÍCULOS ORIGINALES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="4" face="Arial, Helvetica, sans-serif"><strong>Genome size in three species of <em>Glandularia </em>and their hybrids</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><i><b>Tamaño del genoma en tres especies de Glandularia y sus híbridos</b></i></font></p><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><b><font size="3" face="Arial, Helvetica, sans-serif">Ferrari M.R.<sup>1</sup>, Greizerstein E.J.<sup>2,3</sup>, Poggio L.<sup>4*</sup></font></b></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><font size="2"><sup>1</sup> Facultad de Ciencias Veterinarias,<!-- [et_pb_line_break_holder] -->INITRA, UBA, CABA, Argentina.<br /><!-- [et_pb_line_break_holder] --></font></font><font size="2" face="Arial, Helvetica, sans-serif"><sup>2</sup> Catedra de Mejoramiento<!-- [et_pb_line_break_holder] --> Genetico, Facultad de Ciencias<!-- [et_pb_line_break_holder] --> Agrarias, UNLZ, Buenos Aires,<!-- [et_pb_line_break_holder] --> Argentina.<br /><!-- [et_pb_line_break_holder] --> <sup>3</sup> Instituto de Investigaciones<!-- [et_pb_line_break_holder] --> en Produccion Agropecuaria,<!-- [et_pb_line_break_holder] --> Ambiente y Salud (IIPAAS-FCA-CIC),<!-- [et_pb_line_break_holder] --> Argentina.<br /><!-- [et_pb_line_break_holder] --> <sup>4</sup> IEGEBA (UBA-CONICET) Dpto. de<!-- [et_pb_line_break_holder] --> Ecologia, Genetica y Evolucion,<!-- [et_pb_line_break_holder] --> FCEN, CABA, Argentina.<br /><!-- [et_pb_line_break_holder] --></font><font size="2" face="Arial, Helvetica, sans-serif"> <b>Corresponding author</b>:<!-- [et_pb_line_break_holder] -->Lidia Poggio <a href="mailto:lidialidgia@yahoo.com.ar">lidialidgia@yahoo.com.ar</a></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">DOI: 10.35407/bag.2019.xxx.02.05</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Received</b>: 07/19/2019<br /><!-- [et_pb_line_break_holder] --> <b>Revised version received</b>: 11/23/2019<br /><!-- [et_pb_line_break_holder] --> <b>Accepted</b>: 12/10/2019</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>ABSTRACT</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">In this work the relationship between genome size of <em>Glandularia </em>species and the meiotic<!-- [et_pb_line_break_holder] --> configurations found in their hybrids are discussed. <em>Glandularia incisa </em>(Hook.) Tronc.,<!-- [et_pb_line_break_holder] --> growing in two localities of Corrientes and Córdoba provinces, Argentina, with different<!-- [et_pb_line_break_holder] --> ecological conditions, showed inter-population variability of the 2C-value. The DNA content<!-- [et_pb_line_break_holder] --> found in the Corrientes locality (2.41 pg) was higher than that obtained in the Córdoba locality<!-- [et_pb_line_break_holder] --> (2.09 pg) which has more stressful environmental conditions than the former. These values<!-- [et_pb_line_break_holder] --> are statistically different from those that were found in <em>Glandularia pulchella </em>(Sweet) Tronc.<!-- [et_pb_line_break_holder] --> from Corrientes (1.43 pg) and in <em>Glandularia perakii </em>Cov. <em>et </em>Schn from Córdoba (1.47 pg).<!-- [et_pb_line_break_holder] --> The DNA content of the diploid F1 hybrids, <em>G. pulchella </em><strong>× </strong><em>G. incisa </em>and <em>G. perakii </em><strong>× </strong><em>G. incisa</em>,<!-- [et_pb_line_break_holder] --> differed statistically from the DNA content of the parental species, being intermediate<!-- [et_pb_line_break_holder] --> between them. Differences in the frequency of pairing of homoeologous chromosomes were<!-- [et_pb_line_break_holder] --> observed in the hybrids; these differences cannot be explained by differences in genome<!-- [et_pb_line_break_holder] --> size since hybrids with similar DNA content differ significantly in their meiotic behavior.<!-- [et_pb_line_break_holder] --> On the other hand, the differences in the DNA content between the parental species justify<!-- [et_pb_line_break_holder] --> the presence of a high frequency of heteromorphic open and closed bivalents and univalents<!-- [et_pb_line_break_holder] --> with different size in the hybrids.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Key words</b>: Intra-specific DNA content variability; Homoeologous pairing; Heteromorphic <!-- [et_pb_line_break_holder] --> bivalents.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>RESUMEN</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">En el presente trabajo se discute la relación entre el tamaño del genoma en especies de<!-- [et_pb_line_break_holder] --> <em>Glandularia </em>y las configuraciones meióticas encontradas en sus híbridos. El valor 2C mostró<!-- [et_pb_line_break_holder] --> variabilidad interpoblacional en muestras de <em>Glandularia incisa </em>(Hook.) Tronc. coleccionadas<!-- [et_pb_line_break_holder] --> en dos localidades con diferentes condiciones ecológicas (provincias de Corrientes y Córdoba,<!-- [et_pb_line_break_holder] --> Argentina). El contenido de ADN encontrado en Corrientes (2,41 pg) fue mayor que el<!-- [et_pb_line_break_holder] --> obtenido en Córdoba (2,09 pg) donde se registran condiciones ambientales más estresantes.<!-- [et_pb_line_break_holder] --> Estos valores son estadísticamente diferentes de los determinados en <em>Glandularia pulchella</em><!-- [et_pb_line_break_holder] --> (Sweet) Tronc. de Corrientes (1.43 pg) y en <em>Glandularia perakii </em>Cov. <em>et </em>Schn de Córdoba (1.47<!-- [et_pb_line_break_holder] --> pg). El contenido de ADN de los híbridos diploides F1, <em>G. pulchella </em><strong>× </strong><em>G. incisa </em>y <em>G. perakii </em><strong>× </strong><em>G.</em><!-- [et_pb_line_break_holder] --> <em>incisa</em>, difirió estadísticamente del contenido de ADN registrado en las especies parentales<!-- [et_pb_line_break_holder] --> siendo intermedio entre ellas. Las diferencias observadas en la frecuencia de apareamiento<!-- [et_pb_line_break_holder] --> de cromosomas homeólogos no pueden explicarse por diferencias en el tamaño del<!-- [et_pb_line_break_holder] --> genoma, ya que híbridos con un contenido de ADN similar difieren significativamente en<!-- [et_pb_line_break_holder] --> su comportamiento meiótico. Sin embargo, la diferencia en el contenido de ADN entre las<!-- [et_pb_line_break_holder] --> especies parentales explica la presencia de una alta frecuencia de bivalentes heteromórficos<!-- [et_pb_line_break_holder] --> tanto abiertos como cerrados y univalentes con diferentes tamaños.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><b>Palabras clave</b>: Variabilidad intra-específica del contenido de ADN; apareamiento homoeólogo;<!-- [et_pb_line_break_holder] --> Bivalentes heteromórficos.</font></p><!-- [et_pb_line_break_holder] --><hr /><!-- [et_pb_line_break_holder] --><p> </p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>INTRODUCTION</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><!-- [et_pb_line_break_holder] --> Genome size varies among species and its diversification<!-- [et_pb_line_break_holder] --> accompanies the evolution of many groups of plants<!-- [et_pb_line_break_holder] --> (Bennett and Leitch, 2005; Leitch <em>et al</em>., 2005; Gregory<!-- [et_pb_line_break_holder] --> <em>et al.</em>, 2007; Leitch and Leitch, 2013; Poggio <em>et al.</em>, 2014).<!-- [et_pb_line_break_holder] --> Significant variation in DNA content was found among<!-- [et_pb_line_break_holder] --> species of the same genera, among populations of one<!-- [et_pb_line_break_holder] --> species or even among individuals belonging to the<!-- [et_pb_line_break_holder] --> same population or cultivar (Cavallini and Natalli, 1991;<!-- [et_pb_line_break_holder] --> Grehilhuber and Leitch, 2013; Realini <em>et al</em>., 2016).<!-- [et_pb_line_break_holder] --> Variation in genome size arises by increase and/<!-- [et_pb_line_break_holder] --> or decrease of DNA content. The increase arises<!-- [et_pb_line_break_holder] --> predominantly through polyploidy and amplification<!-- [et_pb_line_break_holder] --> of non-coding repetitive DNA heterochromatin and<!-- [et_pb_line_break_holder] --> retrotransposons. Moreover, recombination-based<!-- [et_pb_line_break_holder] --> processes are mechanisms involved in decrease in genome<!-- [et_pb_line_break_holder] --> size or genome downsizing (Soltis <em>et al.</em>, 2003; Bennetzen<!-- [et_pb_line_break_holder] --> <em>et al.</em>, 2005; Grover and Wendel, 2010; Hidalgo <em>et al</em>., 2017).<!-- [et_pb_line_break_holder] --> Besides, numerical polymorphism of B-chromosomes<!-- [et_pb_line_break_holder] --> can modify the size of the genome (Kalendar <em>et al</em>., 2000;<!-- [et_pb_line_break_holder] --> Gregory, 2004; Bennet and Leitch, 2005; Grehilhuber and<!-- [et_pb_line_break_holder] --> Leitch, 2013; Fourastié <em>et al.</em>, 2018).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Several studies reported some relationships between<!-- [et_pb_line_break_holder] --> the DNA content and phenotypic characteristics such<!-- [et_pb_line_break_holder] --> as cell size, duration of the cell cycle, growth rate, leaf<!-- [et_pb_line_break_holder] --> expansion, flowering time, weediness, invasiveness,<!-- [et_pb_line_break_holder] --> seed weight, and minimum generation time (Grime and<!-- [et_pb_line_break_holder] --> Mowforth, 1982; Bennett, 1987; Ohri and Pistrick, 2001;<!-- [et_pb_line_break_holder] --> Beaulieu <em>et al.</em>, 2007; Greihuber and Leitch, 2013; Leitch<!-- [et_pb_line_break_holder] --> and Leitch, 2013; Fourastie <em>et al.</em>, 2018).<!-- [et_pb_line_break_holder] --> Genome size was also associated with ecological<!-- [et_pb_line_break_holder] --> parameters (temperature, precipitation and length of the<!-- [et_pb_line_break_holder] --> growing season) and geographical parameters (altitude<!-- [et_pb_line_break_holder] --> and latitude) (Greihuber and Leitch, 2013; Fourastie <em>et</em><!-- [et_pb_line_break_holder] --> <em>al</em>., 2018). These correlations suggest a biological role for<!-- [et_pb_line_break_holder] --> genome size or “nucleotype”, term coined to describe<!-- [et_pb_line_break_holder] --> the condition of the nucleus that affects the phenotype<!-- [et_pb_line_break_holder] --> independently of the informational content of the DNA<!-- [et_pb_line_break_holder] --> (Bennett, 1971; 1972).<!-- [et_pb_line_break_holder] --> <em>Glandularia </em>J.F. Gmel is a genus of the Verbenaceae<!-- [et_pb_line_break_holder] --> family composed of <em>ca</em>. 100 species with a North-South<!-- [et_pb_line_break_holder] --> American disjoint distribution (O´Leary and Peralta,<!-- [et_pb_line_break_holder] --> 2007; Peralta and Múlgura, 2011). Many of these species,<!-- [et_pb_line_break_holder] --> their hybrids and polyploids have great ornamental<!-- [et_pb_line_break_holder] --> potential due to their colourful flowers, long flowering<!-- [et_pb_line_break_holder] --> period and low water requirements (Imhof <em>et al.</em>, 2013;<!-- [et_pb_line_break_holder] --> González Roca <em>et al.</em>, 2015). The chromosome numbers<!-- [et_pb_line_break_holder] --> of numerous species have been studied, and it was<!-- [et_pb_line_break_holder] --> found that the South American species are mostly<!-- [et_pb_line_break_holder] --> diploid (2n=2x=10) whereas the North American species<!-- [et_pb_line_break_holder] --> are hexaploid (2n=6x=30) or tetraploid (2n=4x=20)<!-- [et_pb_line_break_holder] --> (Schnack and Covas, 1945; Solbrig <em>et al.</em>, 1968; Umber,<!-- [et_pb_line_break_holder] --> 1979; Poggio <em>et al.</em>, 1993; 2016; Turner and Powell, 2005).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Schnack and Solbrig (1953) and Solbrig <em>et al. (</em>1968)<!-- [et_pb_line_break_holder] --> carried out an extensive hybridization program between<!-- [et_pb_line_break_holder] --> South American species of the genus <em>Glandularia </em>and<!-- [et_pb_line_break_holder] --> recently, many artificial hybrids were obtained with<!-- [et_pb_line_break_holder] --> ornamental purposes (Imhof, 2014).<!-- [et_pb_line_break_holder] --> Poggio <em>et al. </em>(2016) analysed <em>G. pulchella </em><strong><em>× </em></strong><em>G. incisa </em>F1<!-- [et_pb_line_break_holder] --> natural hybrids observing variability in the frequency<!-- [et_pb_line_break_holder] --> of bivalents and univalents. <br /><!-- [et_pb_line_break_holder] --> They also reported the<!-- [et_pb_line_break_holder] --> presence of heteromorphic bivalents and differences in<!-- [et_pb_line_break_holder] --> the size of univalents.<!-- [et_pb_line_break_holder] --> In the present work, DNA content and its variations are<!-- [et_pb_line_break_holder] --> reported for the first time in <em>G. pulchella</em>, <em>G. incisa</em>, <em>G. perakii</em><!-- [et_pb_line_break_holder] --> and their F1 hybrids, <em>G. pulchella </em><strong><em>× </em></strong><em>G. incisa </em>and <em>G. perakii </em><strong><em>× </em></strong><em>G.</em><!-- [et_pb_line_break_holder] --> <em>incisa, </em>species and their hybrids have the same chromosome<!-- [et_pb_line_break_holder] --> number (2n=10) (Poggio <em>et al. </em>2011; Poggio <em>et al</em>., 2016).<!-- [et_pb_line_break_holder] --> Moreover, the effect of DNA content of the parental species<!-- [et_pb_line_break_holder] --> on meiotic pairing of homoeologous chromosome in the<!-- [et_pb_line_break_holder] --> natural hybrids is discussed. These studies could shed light<!-- [et_pb_line_break_holder] --> on the biological importance of variation in genome size<!-- [et_pb_line_break_holder] --> and processes of hybrid speciation.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>MATERIALS AND METHODS</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><em>Glandularia incisa</em>, <em>G. pulchella </em>and their natural hybrids<!-- [et_pb_line_break_holder] --> (HA1, HA2, HA3, and HA4): Argentina, province of<!-- [et_pb_line_break_holder] --> Corrientes, Dpto. Capital, Aeropuerto Cambá Punta.<!-- [et_pb_line_break_holder] --> <em>G. incisa</em>, <em>G. perakii </em>and their natural hybrids (HB1):<!-- [et_pb_line_break_holder] --> Argentina, province of Córdoba, Embalse Río Tercero.<!-- [et_pb_line_break_holder] --> Taxonomic identification of the species and natural<!-- [et_pb_line_break_holder] --> hybrids was made according to morphological criteria<!-- [et_pb_line_break_holder] --> described by Poggio <em>et al. </em>(1993).<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> Herbarium materials were deposited in Facultad de<!-- [et_pb_line_break_holder] --> Ciencias Exactas y Naturales, Universidad de Buenos<!-- [et_pb_line_break_holder] --> Aires, Ciudad Autónoma de Buenos Aires, Argentina.<!-- [et_pb_line_break_holder] --> The distance between Corrientes Dpto. Capital<!-- [et_pb_line_break_holder] --> and Embalse Río Tercero is 726 Km. Geografical and<!-- [et_pb_line_break_holder] --> ecological differences between the two localities are<!-- [et_pb_line_break_holder] --> presented in <a href="#tab1">Table 1</a> (Cabrera, 1976).</font></p><!-- [et_pb_line_break_holder] --><p><a name="tab1" id="tab1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><strong>Table 1. </strong>Ecological conditions in Corrientes Dpto. Capital, Province of<!-- [et_pb_line_break_holder] --> Corrientes, Argentina and in Embalse Rio Tercero Province of Cordoba,<!-- [et_pb_line_break_holder] -->Argentina.</font><br /><!-- [et_pb_line_break_holder] --><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a05tab1.jpg" width="278" height="333" /></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Meiotic studies<br /><!-- [et_pb_line_break_holder] --></strong><!-- [et_pb_line_break_holder] --> These studies were done in inmature flowers fixed in<!-- [et_pb_line_break_holder] --> 3:1 (ethanol: acetic acid). The anthers were squashed in<!-- [et_pb_line_break_holder] --> 2% acetic haematoxylin as stain and 1% ferric citrate as<!-- [et_pb_line_break_holder] --> mordant (Nuñez, 1968). In the present paper at least 50<!-- [et_pb_line_break_holder] --> Metaphase I were studied in the parental species and in<!-- [et_pb_line_break_holder] --> <em>G. perakii </em>× <em>G. incisa </em>natural hybrid (HB1). The meiotic<!-- [et_pb_line_break_holder] --> determinations made in <em>G. pulchella </em>× <em>G</em>. <em>incisa </em>were taken<!-- [et_pb_line_break_holder] --> from Poggio <em>et al. </em>(2016). Hybrids HA1, HA2, HA3 and<!-- [et_pb_line_break_holder] --> HA4 in the present paper correspond, respectively to the<!-- [et_pb_line_break_holder] --> hybrids named H5, H8, H9, H4 by Poggio <em>et al. </em>(2016).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Feulgen staining and cytophotometry</strong><!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> DNA content was measured in meiotic cells stained<!-- [et_pb_line_break_holder] -->with the Feulgen Reaction. Inmature flowers were fixed<!-- [et_pb_line_break_holder] -->in 3:1 (ethanol: acetic acid). The staining method was<!-- [et_pb_line_break_holder] -->performed as described in Naranjo <em>et al. </em>(1998) and the<!-- [et_pb_line_break_holder] --> measurements of DNA content were done in telophase<!-- [et_pb_line_break_holder] --> I nuclei (2C). The amount of Feulgen staining per<!-- [et_pb_line_break_holder] --> nucleus, expressed in arbitrary units, was measured<!-- [et_pb_line_break_holder] --> at a wavelength of 570 nm using the scanning method<!-- [et_pb_line_break_holder] --> in a Zeiss Universal Micro spectrophotometer (UMSP<!-- [et_pb_line_break_holder] --> 30). The DNA content expressed in picograms was<!-- [et_pb_line_break_holder] --> calculated using <em>Allium cepa </em>Ailsa Craig as a standard<!-- [et_pb_line_break_holder] --> (2C-DNA=33.55 pg; Bennett and Smith, 1976).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>Statistical analysis<br /><!-- [et_pb_line_break_holder] --></strong><!-- [et_pb_line_break_holder] --> Differences in DNA content were tested through analysis<!-- [et_pb_line_break_holder] --> of variance (ANOVA) and multiple contrasts were<!-- [et_pb_line_break_holder] --> performed with the LSD Fisher method (Fisher, 1932).<!-- [et_pb_line_break_holder] --> These statistical analyses were considered significant<!-- [et_pb_line_break_holder] --> if <em>P </em>values were <0.05 and were performed using the<!-- [et_pb_line_break_holder] --> Infostat program, FCA, National University of Córdoba<!-- [et_pb_line_break_holder] --> (Di Rienzo <em>et al</em>., 2015).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>RESULTS</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">The 2C-DNA content of <em>G. pulchella </em>and <em>G. incisa </em>and<!-- [et_pb_line_break_holder] --> their hybrids collected in the Province of Corrientes<!-- [et_pb_line_break_holder] --> showed significant differences (F6.76=20.83; P<0.0001).<br /><!-- [et_pb_line_break_holder] --> Contrasts performed with the LSD Fisher method are<!-- [et_pb_line_break_holder] --> presented in <a href="#tab2">Table 2</a>.<!-- [et_pb_line_break_holder] --> The 2C-DNA content of <em>G. perakii</em>, and <em>G. incisa</em>, and<!-- [et_pb_line_break_holder] --> their hybrids collected in the Province of Córdoba<!-- [et_pb_line_break_holder] --> showed significant differences (F9.127=44.85; P<0.0001).<!-- [et_pb_line_break_holder] --> Contrasts performed with the LSD Fisher method are<!-- [et_pb_line_break_holder] --> presented in <a href="#tab3">Table 3</a>. Numerical polymorphism for B<!-- [et_pb_line_break_holder] --> chromosomes was detected in <em>G. incisa</em>, <em>G. perakii </em>and<!-- [et_pb_line_break_holder] --> hybrids collected in the Córdoba locality. DNA content<!-- [et_pb_line_break_holder] --> was determined only in plants without B chromosomes<!-- [et_pb_line_break_holder] --> for a better comparison with plants from other localities.<!-- [et_pb_line_break_holder] --> Intra-populational significant differences (P<0.001)<!-- [et_pb_line_break_holder] --> were detected in the three species and in their hybrids<!-- [et_pb_line_break_holder] --> studied in the present work. Inter-populational<!-- [et_pb_line_break_holder] --> significant differences (P<0.001) were detected between<!-- [et_pb_line_break_holder] --> <em>G. incisa </em>collected in the provinces of Corrientes and<!-- [et_pb_line_break_holder] --> Córdoba. In <a href="#fig1">Figure 1</a>, a graphic representation is</font> <font size="3" face="Arial, Helvetica, sans-serif">presented of 2C-DNA content of the parental species<!-- [et_pb_line_break_holder] --> and their hybrids in collections made in the provinces of<!-- [et_pb_line_break_holder] --> Corrientes (A) and Córdoba (B). The DNA content of the<!-- [et_pb_line_break_holder] --> hybrids, <em>G. pulchella </em><strong><em>× </em></strong><em>G. incisa </em>and <em>G. perakii </em><strong><em>× </em></strong><em>G. incisa</em> was intermediate between the parental species (<a href="#tab1">Table<!-- [et_pb_line_break_holder] --> 1</a>, <a href="#tab2">Table 2</a> and <a href="#fig1">Figure 1</a>). DNA content of HA1, HA2, and<!-- [et_pb_line_break_holder] --> HA3, did not show significant differences among them,<!-- [et_pb_line_break_holder] --> but they differed from that of HA4.<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><a name="tab2" id="tab2"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><strong>Table 2. </strong>Nuclear DNA content in <em>G. pulchella</em>, <em>G. incisa</em>, and <em>G. pulchella</em> x <em>G. incisa</em>, collected in Province of Corrientes, Argentina. Means with the<!-- [et_pb_line_break_holder] --> same letters are not significantly different (P≤0.05). Pu= <em>G. pulchella</em>,<!-- [et_pb_line_break_holder] -->In= <em>G. incisa </em>and HA1 - HA4= <em>G. pulchella </em>x <em>G. incisa</em>.</font><br /><!-- [et_pb_line_break_holder] --><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a05tab2.jpg" width="279" height="423" /></p><!-- [et_pb_line_break_holder] --><p><a name="tab3" id="tab3"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><strong>Table 3. </strong>Nuclear DNA content in <em>G. perakii</em>, <em>G. incisa </em>and <em>G. peraki</em>i x <em>G.</em> <em>incisa </em>collected in Province of Cordoba, Argentina. Means with the same<!-- [et_pb_line_break_holder] -->letters are not significantly different (P≤0.05). Pe = <em>G. perakii</em>, In = <em>G. incisa</em> and HB1 = <em>G. perakii </em>x <em>G. incisa.</em></font><br /><!-- [et_pb_line_break_holder] --><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a05tab3.jpg" width="275" height="444" /></p><!-- [et_pb_line_break_holder] --><p><a name="fig1" id="fig1"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="3" face="Arial, Helvetica, sans-serif"><strong><font size="2"><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a05fig1.jpg" width="509" height="287" /><br /><!-- [et_pb_line_break_holder] --> Figure 1. </font></strong><font size="2">Graphic comparison of 2C-DNA content in <em>G. pulchella</em>, <em>G. perakii</em>, <em>G. incisa </em>and the hybrids <em>G. pulchella </em>x <em>G. incisa </em>and <em>G.</em> <em>perakii </em>x <em>G. incisa.</em> A) Materials collected in the Province of Corrientes: <em>G. pulchella </em>(Pu, grey); <em>G. Incise </em>(In, black), hybrids (HA, white).<!-- [et_pb_line_break_holder] --> B) Materials collected in the Province of Cordoba. <em>G. perakii </em>(Pe, grey); <em>G. incisa </em>(In, black); hybrid (HB, white). Different numbers indicate<!-- [et_pb_line_break_holder] -->different individuals in each <em>taxa.</em></font></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"> The three parental species presented five<!-- [et_pb_line_break_holder] --> homomorphic bivalents in all Metaphase I (more than<!-- [et_pb_line_break_holder] --> n=50 cells were studied in each species) (<a href="#fig2">Figure 2 a and<!-- [et_pb_line_break_holder] --> b</a>). The hybrids had univalents of different size and up to<!-- [et_pb_line_break_holder] --> five heteromorphic bivalents (<a href="#fig2">Figure 2 c-f</a>). </font></p><!-- [et_pb_line_break_holder] --><p><a name="fig2" id="fig2"></a></p><!-- [et_pb_line_break_holder] --><p align="center"><font size="2" face="Arial, Helvetica, sans-serif"><strong><img src="https://sag.org.ar/jbag/wp-content/uploads/2020/02/a05fig2.jpg" width="402" height="643" /><br /><!-- [et_pb_line_break_holder] --> Figure 2. </strong>Metaphase I in <em>Glandularia </em>species and F1 hybrids.<!-- [et_pb_line_break_holder] --> a) <em>G. incisa </em>(collected in Cordoba) with five homomorphic bivalents and six B chromosomes.<!-- [et_pb_line_break_holder] --> b) <em>G. pulchella </em>with five homomorphic bivalents.<!-- [et_pb_line_break_holder] --> c-f) hybrids with univalents and heteromorphic bivalents. c) <em>G. perakii </em>x <em>G. incisa </em>with two B<!-- [et_pb_line_break_holder] --> chromosomes and five heteromorphic bivalents. d) <em>G. perakii </em>x <em>G. incisa </em>with five heteromorphic<!-- [et_pb_line_break_holder] --> bivalents. e) <em>G. pulchella </em>x <em>G. incisa </em>with five heteromorphic bivalents. f) <em>G. pulchella </em>x <em>G. incisa </em>with one<!-- [et_pb_line_break_holder] --> heteromorphic bivalent and eight univalents. Arrows show B chromosomes and arrow heads indicate<!-- [et_pb_line_break_holder] -->some notorious heteromorphic bivalents. Bars 10 μm.</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">The mean frequency and standard deviation of<!-- [et_pb_line_break_holder] --> bivalents in the natural hybrids <em>G. pulchella </em><strong>× </strong><em>G. incisa</em> was HA1: 4.98±0.16, HA2: 5.00±0.00, HA3: 2.80±1.21 and<!-- [et_pb_line_break_holder] --> HA4: 3.50±0.72. HA1 and HA2 did not present significant<!-- [et_pb_line_break_holder] --> differences between them (Poggio <em>et al.</em>, 1993).</font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif"><strong>DISCUSSION</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="3" face="Arial, Helvetica, sans-serif">Significant differences in the DNA content of <em>G. incisa</em><!-- [et_pb_line_break_holder] --> with <em>G. pulchella </em>and <em>G. perakii </em>were found. The mean DNA<!-- [et_pb_line_break_holder] --> 2C-values and the variation ranges were determined in<!-- [et_pb_line_break_holder] --> <em>G. incisa </em>2.25 pg (2.00 pg - 2.71 pg), <em>G. pulchella </em>1.43 pg<!-- [et_pb_line_break_holder] --> (1.31 pg - 1.52 pg) and <em>G. perakii </em>1.47 pg (1.36 pg - 1.57 pg).<!-- [et_pb_line_break_holder] --> According to the Kew DNA C-values, these are the first<!-- [et_pb_line_break_holder] --> reports for genus <em>Glandularia</em>. These values are between<!-- [et_pb_line_break_holder] --> the minimum value (<em>Tectona grandis </em>0.96 pg) and the<!-- [et_pb_line_break_holder] --> maximum value (<em>Lantana camara </em>5.50 pg) determined<!-- [et_pb_line_break_holder] --> in five species belonging to different genera of the<!-- [et_pb_line_break_holder] --> Verbenaceae family (RBG Kew DNA C-values, 2017).<!-- [et_pb_line_break_holder] --> Inter-population variability of the 2C-value was<!-- [et_pb_line_break_holder] --> observed in <em>G. incisa </em>growing in two localities with<!-- [et_pb_line_break_holder] --> different geographical and ecological conditions<!-- [et_pb_line_break_holder] --> (Corrientes and Córdoba Provinces). The values of DNA<!-- [et_pb_line_break_holder] --> content obtained in both localities differed significantly<!-- [et_pb_line_break_holder] --> and the 2C values determined in the Corrientes<!-- [et_pb_line_break_holder] --> population were 15% greater than that reported in the<!-- [et_pb_line_break_holder] --> Córdoba population. The population of <em>G. incisa </em>with the<!-- [et_pb_line_break_holder] --> smaller genome was found in drier and more stressful<!-- [et_pb_line_break_holder] --> conditions. These results are in agreement with the<!-- [et_pb_line_break_holder] --> reported in different studies, suggesting that variation<!-- [et_pb_line_break_holder] --> in DNA amount has adaptive significance related to<!-- [et_pb_line_break_holder] --> environmental, climatic and phenological parameters<!-- [et_pb_line_break_holder] --> such as temperature, precipitation, length of growing<!-- [et_pb_line_break_holder] --> season and type of soil (Bennett, 1987, reviewed in<!-- [et_pb_line_break_holder] --> Grehilhuber and Leitch, 2013). Another important<!-- [et_pb_line_break_holder] --> difference between the two populations is that <em>G. incisa</em><!-- [et_pb_line_break_holder] --> growing in Córdoba presented polymorphism for B<!-- [et_pb_line_break_holder] --> chromosomes (0-6 B´s) whereas B chromosomes were<!-- [et_pb_line_break_holder] --> not detected in plants growing in Corrientes. However,<!-- [et_pb_line_break_holder] --> this fact does not affect the comparisons performed<!-- [et_pb_line_break_holder] --> because measurements in the Córdoba population were<!-- [et_pb_line_break_holder] --> carried out in cells without B chromosomes.<!-- [et_pb_line_break_holder] --> <br /><!-- [et_pb_line_break_holder] --> In addition to the interpopulation variation reported<!-- [et_pb_line_break_holder] --> in this paper, the three species showed intrapopulation<!-- [et_pb_line_break_holder] --> variability. The origin of this variation in the nuclear<!-- [et_pb_line_break_holder] --> DNA content would be the result of a fraction potentially<!-- [et_pb_line_break_holder] --> unstable such as transposable elements subject to<!-- [et_pb_line_break_holder] --> environmental and/or genetical events that induce<!-- [et_pb_line_break_holder] --> deletion and amplification of sequences (Grover and<!-- [et_pb_line_break_holder] --> Wendel, 2010).<!-- [et_pb_line_break_holder] --> It is usually expected that the DNA content of<!-- [et_pb_line_break_holder] --> interspecific hybrids were in an intermediate range<!-- [et_pb_line_break_holder] --> between the respective parental species, although<!-- [et_pb_line_break_holder] --> different authors have found, in some cases, that hybrids<!-- [et_pb_line_break_holder] --> have more or less DNA content than their parents. This<!-- [et_pb_line_break_holder] --> would be indicating the occurrence of genetic and<!-- [et_pb_line_break_holder] --> epigenetic changes that were reported in newly-formed<!-- [et_pb_line_break_holder] --> hybrids in several groups of plants (Rayburn <em>et al</em>., 1993;<!-- [et_pb_line_break_holder] --> Grattapaglia and Bradshaw, 1994; Ma and Gustafson,<!-- [et_pb_line_break_holder] --> 2005).<br /><!-- [et_pb_line_break_holder] --></font><font size="3" face="Arial, Helvetica, sans-serif">The natural F1 hybrids <em>G. pulchella </em><strong><em>× </em></strong><em>G</em>. <em>incisa </em>and<!-- [et_pb_line_break_holder] --> <em>G. perakii </em><strong><em>× </em></strong><em>G. incisa</em>, analyzed in the populations of<!-- [et_pb_line_break_holder] --> Corrientes and Córdoba, have intermediate 2C-DNA<!-- [et_pb_line_break_holder] -->values between the parental values and differed<!-- [et_pb_line_break_holder] -->statistically from them.<!-- [et_pb_line_break_holder] -->Differences in DNA content are usually correlated<!-- [et_pb_line_break_holder] -->with karyotype parameters and can affect the entire<!-- [et_pb_line_break_holder] -->chromosome complement or they may be restricted<!-- [et_pb_line_break_holder] -->to a subset of chromosomes. So far, the <em>G. incisa</em>, <em>G.</em><!-- [et_pb_line_break_holder] --><em>pulchella </em>and <em>G. perakii </em>karyotypes have been analysed<!-- [et_pb_line_break_holder] -->(data not published) and all of them show metacentric<!-- [et_pb_line_break_holder] -->chromosomes, being larger the chromosomes of <em>G. incisa</em>.<!-- [et_pb_line_break_holder] -->This leads us to suggest that changes in DNA content<!-- [et_pb_line_break_holder] -->occurred in the whole-chromosome complement adding<!-- [et_pb_line_break_holder] -->or losing equal DNA amounts to both arms or in the<!-- [et_pb_line_break_holder] -->pericentromeric region, maintaining their metacentric<!-- [et_pb_line_break_holder] -->morphology (in preparation).<!-- [et_pb_line_break_holder] --><br /><!-- [et_pb_line_break_holder] -->Solbrig <em>et al. </em>(1968) made artificial crosses between<!-- [et_pb_line_break_holder] -->species of <em>Glandularia </em>and observed homoeologous<!-- [et_pb_line_break_holder] -->pairing in F1 hybrids and suppression of homoeologous<!-- [et_pb_line_break_holder] -->pairing in the allotetraploids. Poggio <em>et al. </em>(2016)<!-- [et_pb_line_break_holder] -->reported that the F1 hybrids <em>G. pulchella </em><strong><em>× </em></strong><em>G. incisa </em>had<!-- [et_pb_line_break_holder] -->variability in homoeologous pairing forming from one to<!-- [et_pb_line_break_holder] -->five heteromorphyc bivalents and univalents of different<!-- [et_pb_line_break_holder] -->size. These authors explained the homoeologous pairing<!-- [et_pb_line_break_holder] -->in the F1 hybrids by suggesting the presence of a pairing<!-- [et_pb_line_break_holder] -->regulator gene/s that precluded homoeologous pairing<!-- [et_pb_line_break_holder] -->when homologous genomes are in two doses in the<!-- [et_pb_line_break_holder] -->polyploids, and display incomplete penetrance when<!-- [et_pb_line_break_holder] -->homologous genomes are in one dose in the diploids.<!-- [et_pb_line_break_holder] --><br /><!-- [et_pb_line_break_holder] -->The differences in DNA content found in the parental<!-- [et_pb_line_break_holder] -->genomes could explain the presence of heteromorphic<!-- [et_pb_line_break_holder] -->bivalents in the F1 hybrids. However, the genome<!-- [et_pb_line_break_holder] -->size cannot explain the differences observed in<!-- [et_pb_line_break_holder] -->homoeologous pairing since hybrids with similar DNA<!-- [et_pb_line_break_holder] -->content differed significantly in their meiotic behavior.<!-- [et_pb_line_break_holder] -->The differences in the frequency of pairing of<!-- [et_pb_line_break_holder] -->homoeologous chromosomes that were observed in the<!-- [et_pb_line_break_holder] -->hybrids cannot be explained by the genome, size of the<!-- [et_pb_line_break_holder] -->parental species, since hybrids with similar DNA content<!-- [et_pb_line_break_holder] -->differed significantly in their meiotic behavior. On the<!-- [et_pb_line_break_holder] -->other hand, the differences in the DNA content between<!-- [et_pb_line_break_holder] -->the parental species could justify the presence of a high<!-- [et_pb_line_break_holder] -->frequency of heteromorphic open and closed bivalents<!-- [et_pb_line_break_holder] -->as well as univalents with different size in the hybrids.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>ACKNOWLEDGEMENTS</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">The authors thank National Council of<!-- [et_pb_line_break_holder] --> Scientific Research of Argentina (CONICET),<!-- [et_pb_line_break_holder] --> University of Buenos Aires, and University of<!-- [et_pb_line_break_holder] --> Lomas de Zamora. This research was carried<!-- [et_pb_line_break_holder] --> out in Argentina and supported by grants<!-- [et_pb_line_break_holder] --> from the Consejo Nacional de Investigaciones<!-- [et_pb_line_break_holder] --> Científicas y Técnicas, Universidad de Buenos<!-- [et_pb_line_break_holder] --> Aires and Agencia Nacional de Producción<!-- [et_pb_line_break_holder] --> Científica y Tecnológica SECyT.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><strong>REFERENCES</strong></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"><!-- [et_pb_line_break_holder] --> 1. Beaulieu J.M., Moles A.T., Leitch I.J., Bennett<!-- [et_pb_line_break_holder] --> M.D., Dickie J.B., Knight C.A. (2007)<!-- [et_pb_line_break_holder] --> Correlated evolution of genome size and seed<!-- [et_pb_line_break_holder] --> mass. New Phytol. 173: 422-437.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 2</font><font size="2" face="Arial, Helvetica, sans-serif">. Bennett M.D. (1971) The duration of meiosis.<!-- [et_pb_line_break_holder] --> Proc. Royal Soc. Lond. Volume 178, issue<!-- [et_pb_line_break_holder] -->1052.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 3. Bennett M.D. (1972) Nuclear DNA content and<!-- [et_pb_line_break_holder] --> minimum generation time in herbaceous<!-- [et_pb_line_break_holder] --> plants. Proc. Royal Soc. Lond. B 181: 109-135.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 4. Bennett M.D. (1987) Variation in genomic form<!-- [et_pb_line_break_holder] --> in plants and its ecological implications. New<!-- [et_pb_line_break_holder] --> Phytol. 106: 177-200.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 5. Bennett M.D., Smith J.B. (1976) Nuclear DNA<!-- [et_pb_line_break_holder] --> amounts in angiosperms. Philos. Trans.<!-- [et_pb_line_break_holder] --> Royal Soc. B 274: 227-274.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 6. Bennett M.D., Leitch I.J. (2005) Plant genome size<!-- [et_pb_line_break_holder] --> research: a field focus. Ann. Bot. 95 (1): 1-6.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 7. Bennetzen J.L., MA J., Devos K.M. (2005)<!-- [et_pb_line_break_holder] --> Mechanisms of Recent Genome Size<!-- [et_pb_line_break_holder] --> Variation in Flowering Plants. Ann. Bot. 5:<!-- [et_pb_line_break_holder] --> 127-132.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 8. Cabrera A.L. (1976) Regiones Fitogeográficas<!-- [et_pb_line_break_holder] --> Argentinas. En: Enciclopedia Argentina de<!-- [et_pb_line_break_holder] --> Agricultura y Jardinería. Editorial Acme,<!-- [et_pb_line_break_holder] --> Buenos Aires, Argentina: Tomo II (1): 1-85.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 9. Cavallini A., Natali L. (1991) Intraspecific<!-- [et_pb_line_break_holder] --> variation of nuclear DNA content in plant<!-- [et_pb_line_break_holder] --> species. Caryologia 44: 93-107.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 10. Di Rienzo J.A., Casanoves F., Balzarini M.G.,<!-- [et_pb_line_break_holder] --> González L., Tablada M., Robledo C.W. (2015)<!-- [et_pb_line_break_holder] --> InfoStat versión 2015. Grupo InfoStat, FCA,<!-- [et_pb_line_break_holder] --> Universidad Nacional de Córdoba, Argentina.<!-- [et_pb_line_break_holder] --> URL <a href="http://www.infostat.com.ar" target="_blank">http://www.infostat.com.ar</a>.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 11. Fisher R.A. (1932) Statistical methods for<!-- [et_pb_line_break_holder] --> research workers, 4th ed. Edinburgh: Oliver<!-- [et_pb_line_break_holder] --> and Boyd.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 12. Fourastié M.F., Gottlieb A.M., Poggio L.,<!-- [et_pb_line_break_holder] --> González G.E. (2018) Are cytological<!-- [et_pb_line_break_holder] --> parameters of maize landraces (<em>Zea mays</em><!-- [et_pb_line_break_holder] --> ssp. mays) adapted along an altitudinal<!-- [et_pb_line_break_holder] --> cline? J. Pl. Res. 131: 285.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 13. González Roca L., Iannicelli J., Coviella A.,<!-- [et_pb_line_break_holder] --> Bugallo V., Bologna P., Pitta-Álvarez S.,<!-- [et_pb_line_break_holder] --> Escandón A. (2015) A protocol for the <em>in</em><!-- [et_pb_line_break_holder] --> <em>vitro </em>propagation and polyploidization<!-- [et_pb_line_break_holder] --> of an interspecific hybrid of <em>Glandularia</em><!-- [et_pb_line_break_holder] --> (<em>G. peruviana </em>x <em>G. scrobiculata</em>). Scientia<!-- [et_pb_line_break_holder] --> Horticulturae 184: 46-54.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 14. Grattapaglia D., Bradshaw Jr. H.D. (1994)<!-- [et_pb_line_break_holder] --> Nuclear DNA content of commercially<!-- [et_pb_line_break_holder] --> important <em>Eucalyptus </em>species and hybrids.<!-- [et_pb_line_break_holder] --> Can. J. For. Res. 24: 1074-1078.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 15. Gregory T.R. (2004) Macroevolution, hierarchy<!-- [et_pb_line_break_holder] --> theory, and the C-value enigma. Paleobiology<!-- [et_pb_line_break_holder] --> 30: 179-202.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 16. Gregory T.R., Nicol J.A., Tamm H., Kullman B.,<!-- [et_pb_line_break_holder] --> Kullman K., Leitch I.J., Murray B.G., Kapraun<!-- [et_pb_line_break_holder] --> D.F., Greilhuber J., Bennett M.D. (2007)<!-- [et_pb_line_break_holder] --> Eukaryotic genome size databases. Nucleic<!-- [et_pb_line_break_holder] --> Acids Res. 35 (suppl. 1): D332-D338.<!-- [et_pb_line_break_holder] --></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 17. Greilhuber J., Leitch I.J. (2013) Genome size and<!-- [et_pb_line_break_holder] --> the phenotype. In: Leitch I.J., Greilhuber J.,<!-- [et_pb_line_break_holder] --> Dolezel J., Wendel J.F. (Eds.) Plant genome<!-- [et_pb_line_break_holder] --> diversity, Vol. 2. Vienna: Springer, pp. 323-340.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 18. Grime J.P., Mowforth M.A. (1982) Variation in<!-- [et_pb_line_break_holder] --> genome size an ecological interpretation.<!-- [et_pb_line_break_holder] --> Nature 299: 151-153.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 19. Grover C.E., Wendel J.F. (2010) Recent insights<!-- [et_pb_line_break_holder] --> into mechanisms of genome size change<!-- [et_pb_line_break_holder] --> in plants. J. of Botany Vol. 2010, Article ID<!-- [et_pb_line_break_holder] --> 382732: 1-8.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 20. Hidalgo O., Pellicer J., Christenhusz M.,<!-- [et_pb_line_break_holder] --> Schneider H. (2017) Is there an upper limit to<!-- [et_pb_line_break_holder] --> genome size? Trends Plant ScI. 22 (7), DOI 10<!-- [et_pb_line_break_holder] --> 1016/j.tplants.2017.04.005.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 21. Imhof L, Suarez M, Paganelli F, Facciuto G.<!-- [et_pb_line_break_holder] --> (2013) Interspecific hybridization among<!-- [et_pb_line_break_holder] --> three species of <em>Glandularia </em>(Verbenaceae)<!-- [et_pb_line_break_holder] --> native to Argentina. <em>Acta Horticulturae</em><!-- [et_pb_line_break_holder] --> 1000:481-486.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 22. Imhof L. (2014) Bases para el mejoramiento<!-- [et_pb_line_break_holder] --> de <em>Glandularia </em>con fines ornamentales. PhD<!-- [et_pb_line_break_holder] --> Thesis Universidad Católica de Córdoba-<!-- [et_pb_line_break_holder] --> INTA, Argentina.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 23. Kalendar R., Tanskanen J., Immonen S., Nevo E.,<!-- [et_pb_line_break_holder] --> Schulman A.H. (2000) Genome evolution of<!-- [et_pb_line_break_holder] --> wild barley (<em>Hordeum spontaneum</em>) by BARE-<!-- [et_pb_line_break_holder] --> 1 retrotransposon dynamics in response to<!-- [et_pb_line_break_holder] --> sharp microclimatic divergence. Proc. Natl.<!-- [et_pb_line_break_holder] --> Acad. Sci. 97: 6603-6607.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 24. Leitch I.J., Leitch A.R. (2013) Genome size<!-- [et_pb_line_break_holder] --> diversity and evolution in land plants. In:<!-- [et_pb_line_break_holder] --> Leitch I.J., Greilhuber J., Dolezel J., Wendel<!-- [et_pb_line_break_holder] --> J.F. (Eds.) Plant Genome Diversity, Vol. 2.<!-- [et_pb_line_break_holder] --> Springer, Vienna, pp. 307-322.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 25. Leitch I.J., Soltis D.E., Soltis P.S., Bennett M.D.<!-- [et_pb_line_break_holder] --> (2005) Evolution of DNA amounts across<!-- [et_pb_line_break_holder] --> land plants (Embryophyta). Ann. Bot. 95:<!-- [et_pb_line_break_holder] --> 207-217.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 26. Ma X.F., Gustafson J.P. (2005) Genome<!-- [et_pb_line_break_holder] --> evolution of allopolyploids: a process of<!-- [et_pb_line_break_holder] --> cytological and genetic diploidization.<!-- [et_pb_line_break_holder] --> Cytogenet. Genome Res. 109: 236-249.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 27. Naranjo C.A., Ferrari M.R., Palermo A.M.,<!-- [et_pb_line_break_holder] --> Poggio L. (1998) Karyotype, DNA content and<!-- [et_pb_line_break_holder] --> meiotic behaviour in five South American<!-- [et_pb_line_break_holder] --> Species of <em>Vicia </em>(Fabaceae). Ann. Bot. 82:<!-- [et_pb_line_break_holder] --> 757-764.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 28. Nuñez O. (1968) An acetic-haematoxilin squash<!-- [et_pb_line_break_holder] --> method for small chromosomes. Caryologia<!-- [et_pb_line_break_holder] --> 21: 115-119.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 29. O’Leary N., Peralta P. (2007) Nuevas<!-- [et_pb_line_break_holder] --> combinaciones en el género <em>Glandularia</em><!-- [et_pb_line_break_holder] --> (Verbenaceace). Darwiniana 45: 218-230.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 30. Ohri D., Pistrick K. (2001) Phenology and<!-- [et_pb_line_break_holder] --> Genome Size Variation in <em>Allium </em>L. - a Tight<!-- [et_pb_line_break_holder] --> Correlation? Plant Biol. (Stuttg) 3 (6): 654-<!-- [et_pb_line_break_holder] --> 660.<!-- [et_pb_line_break_holder] --></font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 31. Peralta P.F., Múlgura M.E. (2011) El Género<!-- [et_pb_line_break_holder] --> <em>Glandularia </em>(Verbenaceae) en Argentina.<!-- [et_pb_line_break_holder] --> Ann. Missouri Bot. Gard. 98: 358-412.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 32. Poggio L., Botta S.M., Greizerstein E.J.,<!-- [et_pb_line_break_holder] --> Ferrari M.R. (1993) Natural hybridization<!-- [et_pb_line_break_holder] --> in <em>Glandularia </em>(Verbenaceae). Evolutionary<!-- [et_pb_line_break_holder] --> implications of chromosome pairing.<!-- [et_pb_line_break_holder] --> Darwiniana 32: 77-90.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 33. Poggio L., Ferrari M.R., Greizerstein E.J.<!-- [et_pb_line_break_holder] --> (2011) Variabilidad genética y epigenética<!-- [et_pb_line_break_holder] --> en híbridos naturales y artificiales de<!-- [et_pb_line_break_holder] --> Glandularia. XL Congreso Argentino de<!-- [et_pb_line_break_holder] --> Genética, III Simposio Latinoamericano<!-- [et_pb_line_break_holder] --> de Citogenética y Evolución, I Jornadas<!-- [et_pb_line_break_holder] --> Regionales SAG-NEA. Corrientes 18-21 de<!-- [et_pb_line_break_holder] --> septiembre de 2011. BAG XLI: 129.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 34. Poggio L., Greizerstein E.J., Ferrari M.R.<!-- [et_pb_line_break_holder] --> (2016) The variability in the amount of<!-- [et_pb_line_break_holder] --> homoeologous pairing among F1 hybrids<!-- [et_pb_line_break_holder] --> depends on the genotypical constitution of<!-- [et_pb_line_break_holder] --> the parental species. AoB Plants 8: plw030.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 35. Poggio L., Realini M.F., Fourastié M.F.,<!-- [et_pb_line_break_holder] --> García A.M., González G.E. (2014) Genome<!-- [et_pb_line_break_holder] --> downsizing and karyotype constancy in<!-- [et_pb_line_break_holder] --> diploid and polyploid congeners: a model<!-- [et_pb_line_break_holder] --> of genome size variation. AoB Plants 029,<!-- [et_pb_line_break_holder] --> <a href="https://doi.org/10.1093/aobpla/plu029" target="_blank">https://doi.org/10.1093/aobpla/plu029</a>.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 36. Rayburn A.L., Biradar D.P., Bullock D.G.,<!-- [et_pb_line_break_holder] --> McMurphy L.M. (1993) Nuclear DNA content<!-- [et_pb_line_break_holder] --> in F1-hybrids of maize. Heredity 70: 294-<!-- [et_pb_line_break_holder] --> 300.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 37. RBG Kew Plant DNA C-values database (2017)<!-- [et_pb_line_break_holder] --> <a href="http://www.kew.org/cvalues" target="_blank">http://www.kew.org/cvalues</a>.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 38. Realini M.F., Poggio L., Cámara Hernández J.,<!-- [et_pb_line_break_holder] --> González G.E. (2016) Intra-specific variation<!-- [et_pb_line_break_holder] --> in genome size in maize: cytological and<!-- [et_pb_line_break_holder] --> phenotypic correlates. AoB Plants 8: plv138.<!-- [et_pb_line_break_holder] --> </font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif">39. Schnack B., Covas G. (1945) Hibridación interespecífica en <em>Glandularia </em>(Verbenaceas). Darwiniana 7: 71-79.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 40. Schnack B., Solbrig O.T. (1953). El híbrido <em>G. lacinata </em>× <em>G. peruviana </em>y su anfiploide artificial. Rev. Fac. Agron. Univ. Nac. La Plata 29: 255-266.</font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 41. Solbrig O.T., Passani C., Glass R. (1968) Artificial hybridization between different polyploid levels in <em>Glandularia </em>(Verbenaceae). Am. J. Bot. 55: 1235-1239. </font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 42. Soltis D.E., Soltis P.S., Tate J.A. (2003) Advances in the study of polyploidy since plant speciation. New Phytol. 161: 173-191. </font></p><!-- [et_pb_line_break_holder] --><p><font size="2" face="Arial, Helvetica, sans-serif"> 43. Turner B.L., Powell A.M. (2005) Chromosome numbers of <em>Glandularia </em>(Verbenaceae) from Central and trans-Pecos, Texas. SIDA. Contr. Bot. 21: 1657-1661. </font></p><!-- [et_pb_line_break_holder] --><font size="2" face="Arial, Helvetica, sans-serif">44. Umber R.E. (1979) The genus <em>Glandularia</em> (Verbenaceae) in North America. Syst. Bot. 4: 72-102.</font><!-- [et_pb_line_break_holder] --></body><!-- [et_pb_line_break_holder] --></html>
Verified by MonsterInsights